6.003 (Fall 2009)

Quiz #1

October 7, 2009

Name:

Kerberos Username:

Please circle your section number:

Section	Instructor	Time
1	Marc Baldo	$10 \mathrm{am}$
2	Marc Baldo	$11 \mathrm{am}$
3	Elfar Adalsteinsson	$1 \mathrm{pm}$
4	Elfar Adalsteinsson	$2 \mathrm{pm}$

Partial credit will be given for answers that demonstrate some but not all of the important conceptual issues.

Explanations are not required and will not affect your grade.

You have **two hours**.

Please put your initials on all subsequent sheets.

Enter your answers in the boxes.

This quiz is closed book, but you may use one 8.5×11 sheet of paper (two sides).

No calculators, computers, cell phones, music players, or other aids.

1	/20
2	/20
3	/20
4	/20
5	/20
Total	/100

1. Difference equation [20 points]

Consider the system described by the following difference equation:

$$y[n] = \alpha x[n] + \beta x[n-1] - y[n-2].$$

a. Assume that the system starts at rest and that the input x[n] is the **unit-step** signal u[n].

$$x[n] = u[n] \equiv \begin{cases} 1 & n \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$\begin{array}{c} x[n] \\ 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline$$

Find y[119] and enter its value in the box below.

$$y[119] =$$

Consider the same system again.

$$y[n] = \alpha x[n] + \beta x[n-1] - y[n-2]$$

b. Let $\alpha = 3$ and $\beta = 4$. Assume that the system starts at rest and that the input x[n] is the **unit-sample** signal.

$$\begin{array}{c|c} x[n] \\ \bullet 1 \\ \bullet n \end{array}$$

Determine coefficients A and B so that the response is

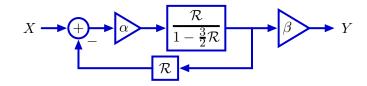
$$Aj^n + B(-j)^n$$
; for $n \ge 0$.

Enter the coefficients in the boxes below, or enter **none** if no such coefficients can be found.

$$A =$$
 $B =$

2. Feedback [20 points]

Consider the following system.



Assume that X is the unit-sample signal, $x[n] = \delta[n]$. Determine the values of α and β for which y[n] is the following sequence (i.e., $y[0], y[1], y[2], \ldots$):

$$0, 1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \frac{31}{16}, \dots$$

Enter the values of α and β in the boxes below. Enter **none** if the value cannot be determined from the information provided.

$$\alpha =$$
 $\beta =$

3. Scaling time [20 points]

A system containing only adders, gains, and delays was designed with system functional

$$H = \frac{Y}{X}$$

which is a ratio of two polynomials in \mathcal{R} . When this system was constructed, users were dissatisfied with its responses. Engineers then designed three new systems, each based on a different idea for how to modify H to improve the responses.

System H_1 : every delay element in H is replaced by a cascade of two delay elements. **System** H_2 : every delay element in H is replaced by a gain of $\frac{1}{2}$ followed by a delay. **System** H_3 : every delay element in H is replaced by a cascade of three delay elements.

For each of the following parts, evaluate the truth of the associated statement and enter **yes** if the statement is always true or **no** otherwise.

a. If H has a pole at $z = j = \sqrt{-1}$, then H_1 has a pole at $z = e^{j5\pi/4}$.

Statement is always true (**yes** or **no**):

b. If H has a pole at z = p then H_2 has a pole at z = 2p.

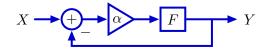
Statement is always true (**yes** or **no**):

c. If H is stable then H_3 is also stable (where a system is said to be stable if all of its poles are inside the unit circle).

Statement is always true (**yes** or **no**):

4. Mystery Feedback [20 points]

Consider the following feedback system where F is the system functional for a system composed of just adders, gains, and delay elements.



If $\alpha = 10$ then the closed-loop system functional is known to be

$$\left. \frac{Y}{X} \right|_{\alpha=10} = \left. \frac{1+\mathcal{R}}{2+\mathcal{R}} \right|_{\alpha=10}$$

Determine the closed-loop system functional when $\alpha = 20$.

$$\frac{Y}{X}\Big|_{\alpha=20} =$$

5. Ups and Downs [20 points]

Use a small number of delays, gains, and 2-input adders (and no other types of elements) to implement a system whose unit-sample response (h[0], h[1], h[2], ...) (starting at rest) is

 $1, 2, 3, 1, 2, 3, 1, 2, 3, \ldots$

Draw a block diagram of your system below.

Worksheet (intentionally blank)

Worksheet (intentionally blank)