
6.003 Homework #1 Solutions

Problems
1. Solving differential equations

Solve the following differential equation

y(t) + 3dy(t)
dt

+ 2d
2y(t)
dt2

= 1

for t ≥ 0 assuming the initial conditions y(0) = 1 and dy(t)
dt

∣∣∣
t=0

= 2. Express the solution
in closed form. Enter your closed form expression the the box below.
[Hint: assume the homogeneous solution has the form Aes1t +Bes2t.]

y(t) = −4e−t + 4e−t/2 + 1

First solve the homogeneous equation: yh(t) + 3ẏh(t) + 2ÿh(t) = 0. Assume yh(t) = Aest.
Then ẏh(t) = sAest and ÿh(t) = s2Aest. Substitute into the homogeneous differential
equation to obtain (1 + 3s+ 2s2)Aest = 0. Since est is never equal to zero, either A must
be 0 or 1 + 3s + 2s2 must be zero. If A were zero, then the solution would be trivial
(i.e., yh(t) = 0), so the latter must be true to get a non-zero solution. From the factored
form (1 + s)(1 + 2s) = 0, it is clear that s could be −1 or −0.5. Therefore the complete
homogeneous solution could be written as

yh(t) = Ae−t +Be−t/2

as in the hint. The particular solution has the same form as the inhomogenous part,
so that yp(t) = 1. To satisfy the initial conditions, we require that y(t) (the sum of the
homogeneous and particular parts) satisfies y(0) = A+B+1 = 1 and ẏ(0) = −A−B/2 = 2
so that A = −4 and B = 4. The final solution is

y(t) = −4e−t + 4e−t/2 + 1 .
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2. Solving difference equations

Solve the following difference equation

8y[n]− 6y[n− 1] + y[n− 2] = 1

for n ≥ 0 assuming the initial conditions y[0] = 1 and y[−1] = 2. Express the solution in
closed form. Enter your closed form expression the the box below.
[Hint: assume the homogeneous solution has the form Azn

1 +Bzn
2 .]

y[n] = 1
6

(
1
4

)n

+ 1
2

(
1
2

)n

+ 1
3

First solve the homogeneous system: 8yh[n]− 6yh[n− 1] + yh[n− 2] = 0. Assume yh[n] =
Azn. Then yh[n − 1] = Azn−1 = z−1Azn and yh[n − 2] = Azn−2 = z−2Azn. Substitute
into the original difference equation to obtain (8− 6z−1 + z−2)Azn = 0. Since zn is never
equal to zero, either A must be 0 or (8− 6z−1 + z−2) must be zero. If A were zero, then
the solution would be trivial (i.e., yh[n] = 0), so the latter must be true to get a non-zero
solution. From the factored form (4− z−1)(2− z−1) = 0, it is clear that z−1 could be 4 or
2. Therefore the complete homogeneous solution could be written as

yh[n] = A

(
1
4

)n
+B

(
1
2

)n
as in the hint. The particular solution has the same form as the non-homogeneous part,
so that yp[n] = 1

3 . To satisfy the initial conditions, we require y[n] (which is the sum
of the homogeneous and particular parts) satisfies y[0] = A + B + 1 = 1

3 and y[−1] =
A/4 +B/2 + 1

3 = 2 so that A = 1
6 and B = 1

2 . The final solution is

y[n] = 1
6

(
1
4

)n
+ 1

2

(
1
2

)n
+ 1

3
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3. Geometric sums

a. Expand 1
1− a in a power series.

power series: 1 + a + a2 + a3 + · · ·

For what range of a does your answer converge?

range: |a| < 1

One can expand 1
1−a using synthetic division as follows:

1 +a +a2 +a3 + · · ·
1− a 1

1 −a
a
a −a2

a2

a2 −a3

a3

a3 −a4
· · ·

Alternatively, one could use a Taylor series:
d

da
(1− a)−1 = (1− a)−2

d2

da2 (1− a)−1 = 2(1− a)−3

d3

da3 (1− a)−1 = 6(1− a)−4

d4

da4 (1− a)−1 = 24(1− a)−5

· · ·

1
1− a = (1− a)−1∣∣

a=0 + d

da
(1− a)−1

∣∣∣∣
a=0

a+ 1
2
d2

da2 (1− a)−1
∣∣∣∣
a=0

a2

+ 1
3!

d3

da3 (1− a)−1
∣∣∣∣
a=0

a3 + 1
4!

d4

da4 (1− a)−1
∣∣∣∣
a=0

a4 + · · ·

= 1 + a+ a2 + a3 + a4 + · · ·

These expressions converge iff |an| tends toward zero, i.e., |a| < 1.
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b. Express
N−1∑
n=0

an in closed form.

closed form: 1− aN

1− a

For what range of a does your answer converge?

range: |a| < ∞

N−1∑
n=0

an =
∞∑
n=0

an −
∞∑
n=N

an =
∞∑
n=0

an − aN
∞∑
n=0

an = (1− aN )
∞∑
n=0

an = 1− aN

1− a

Since this is a finite sum, it converges for all (finite) values of a.
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c. Expand 1
(1− a)2 in a power series.

power series: 1 + 2a + 3a2 + 4a3 + · · ·

For what range of a does your answer converge?

range: |a| < 1

One can expand 1
(1− a)2 using synthetic division as follows:

1 +2a +3a2 +4a3 + · · ·
1− 2a+ a2 1

1 −2a +a2

+2a −a2

+2a −4a2 +2a3

+3a2 −2a3+3a2

+3a2 −6a3 +3a4

+4a3 −3a4

Alternatively, one could use a Taylor series.
The expansion converges as long as lim

n→∞
(n+ 1)an = 0, i.e., if |a| < 1.
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4. CT transformations

Let x(t) represent the signal shown in the following plot.

−2 −1 0 1 2
−1

1

t

x(t)

The signal is zero outside the range −2 < t < 2.
a. The following plot shows y1(t), which is a signal that is derived from x(t).

−2 −1 0 1 2
−1

1

t

y1(t)

Determine an expression for y1(t) in terms of x(·).

y1(t) = x(2t + 2)

b. The following plot shows y2(t), which is a signal that is derived from x(t).

−2 −1 0 1 2
−1

1

t

y2(t)

Determine an expression for y2(t) in terms of x(·).

y2(t) = x(1 − t)
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c. Let y3(t) = x(2t+ 3). Determine all values of t for which y3(t) = 1.

range of t : −3
2 ≤ t < −1

2

x(t) = 1 for 0 ≤ t < 2. Therefore y3(t) = 1 if 0 < 2t+ 3 < 2, i.e.,

−3
2 ≤ t < −

1
2 .

d. Assume that x(t) can be written as the sum of an even part

xe(t) = xe(−t)

and an odd part

xo(t) = −xo(−t) .

For what values of t is xe(t) = 0?

values of t: |t| ≥ 2 or |t| = 1

Let x(t) = xe(t) + xo(t). Then x(−t) = xe(−t) + xo(−t). By the definitions of even
and odd, it follows that x(−t) = xe(t) − xo(t). Add this to the first equation to get
x(t) + x(−t) = 2xe(t). Thus

xe(t) = 1
2 (x(t) + x(−t))

is uniquely determined by x(t). The function xe(t) is plotted below.

−2 −1 0 1 2
−1

1

t

xe(t)

From the plot, it is clear that xe(t) = 0 if |t| > 2 or |t| = 1. Since x(t) is defined to be
zero at t = ±2, we should include those points as well, so |t| ≥ 2 or |t| = 1.
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Engineering Design Problems
5. Decomposing Signals

The even and odd parts of a signal x[n] are defined by the following:
• xe[−n] = xe[n] (i.e., xe is an even function of n)
• xo[−n] = −xo[n] (i.e., xo is an odd function of n)
• x[n] = xe[n] + xo[n]
Let xr[n] represent the part of x[n] that occurs for n ≥ 0,

xr[n] =
{
x[n] n ≥ 0
0 otherwise

.

Let xl[n] represent the part of x[n] that occurs for n < 0),

xl[n] =
{
x[n] n < 0
0 otherwise

.

Notice that xr[0] = x[0] while xl[0] = 0.

a. Is it possible to determine x[n] (for all n) from xe[n] and xr[n]?

Yes or No: Yes

If yes, explain a procedure for doing so. If no, explain why not.

We can find an expression for xo[n] in two parts. First, for n ≥ 0, x[n] = xr[n]. Since
xo[n] = x[n]− xe[n], it follows that xo[n] = xr[n]− xe[n] for n ≥ 0. Second, for n < 0,
we can use the fact that xo[n] is always −xo[−n] to find that xo[n] = −xr[−n]+xe[−n]
for n < 0. Having constructed xo[n] for all n, it is easy to reconstruct x[n] from the
sum of xo[n] and xe[n] (which was given).
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b. Is it possible to determine x[n] (for all n) from xo[n] and xl[n]?

Yes or No: No

If yes, explain a procedure for doing so. If no, explain why not.

It is impossible to determine x[0] from the information given, since xo[0] = 0 and
xl[0] = 0. Therefore, it is impossible to reconstruct x[n] from xo[n] and xl[n].
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6. Leaky tanks
The following figure illustrates a cascaded system of two water tanks. Water flows
− into the first tank at a rate r0(t),
− out of the first tank and into the second at a rate r1(t), and
− out of the second tank at a rate r2(t).

r0(t)

r1(t)

r2(t)

h1(t)

h2(t)

The rate of flow out of each tank is proportional to the height of the water in that tank:
r1(t) = k1h1(t) and r2(t) = k2h2(t), where k1 and k2 are each 0.2m2/second. Both tanks
have heights of 1m. The cross-sectional area of tank 1 is A1 = 4m2 and that of the
second tank is A2 = 2m2. At time t = 0, both tanks are empty.
Part a. Let x(t) = r0(t) represent the input of the tank system and y(t) = r2(t)
represent the output. Determine the relation between the input and the output. Express
this relation as a differential equation of the form

a0y(t) + a1
dy(t)
dt

+ a2
d2y(t)
dt2

+ · · · = x(t) + b1
dx(t)
dt

+ b2
d2x(t)
dt2

+ · · ·

where the coefficient of x(t) is 1.

a0, a1, a2, · · ·: 1, 30, 200, 0, 0, · · ·

b1, b2, b3, · · ·: 0, 0, 0, · · ·

The volume of water in tank 1 is A1h1(t). Therefore, the time rate of change of water in
tank 1 is A1

dh1(t)
dt . Since water is neither created nor destroyed, the time rate of change

of water in tank 1 is equal to the difference between the rate of water that enters (r1(t))
and exits (r2(t)),

A1
dh1(t)
dt

= r0(t)− r1(t) .

Substituting r1(t)/k1 for h1(t) and rearranging yields
A1
k1

dr1(t)
dt

+ r1(t) = r0(t) .

A similar relation holds for tank 2,
A2
k2

dr2(t)
dt

+ r2(t) = r1(t) .
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Substitute r1(t) from the last equation into the prior equation to obtain a relation between
x(t) = r0(t) and y(t) = r2(t),

A1A2
k1k2

d2y(t)
dt2

+
(
A1
k1

+ A2
k2

)
dy(t)
dt

+ y(t) = 200d
2y(t)
dt2

+ 30dy(t)
dt

+ y(t) = x(t) .
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Part b. Assume that r0(t) is held constant at rate r0. What is the maximum value of
r0 such that neither tank will ever overflow if both tanks start out empty.

r0: 0.2m3/s

Initially, h1(t) is zero, so r1(t) is also zero. Thus, r0 causes h1(t) to rise. As h1(t) rises, r1(t)
increases until r1(t) = r0 or tank 1 overflows. Tank 1 will overflow when r1 = k1 × 1m.
Therefore, to keep tank 1 from overflowing, we require that r0 = r1 < k1 × 1m, i.e.,
r0 < 0.2m3/s. The same reasoning applies to tank 2. Therefore, the maximum value of
r0 such that neither tank overflows is 0.2m3/s.

Part c. Because r1(t) is both the output of the first tank and the input of the second
tank, we can equivalently think of the two-tank system as a cascade of two one-tank
systems, as shown in the following figure.

tank 1 tank 2r0(t)
r1(t)

r2(t)

Determine a differential equation that relates r1(t) to r0(t). Determine the solution to
this differential equation when r0(t) is held constant at 0.1m3/s. Assume that tank #1
is initially empty.

r1(t) = 0.1 − 0.1e−t/20

As in part a,
A1
k1

dr1(t)
dt

+ r1(t) = r0(t) .

Thus

20dr1(t)
dt

+ r1(t) = 0.1 .

Assume a solution of the form

r1(t) = Ae−t/τ +B

for t > 0. Substitute into the differential equation to obtain(
−20A

τ
+A

)
e−t/τ +B = 0.1

Thus B = 0.1 and τ = 20, so that

r1(t) = Ae−t/20 + 0.1

for t > 0. But r1(0) = 0. Therefore A = −0.1, and the final solution is

r1(t) = 0.1− 0.1e−t/20 .

The flow r1(t) starts at zero and exponentially approaches 0.1m3/s with a time constant
τ of 20 s.
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Part d. We could similarly determine a differential equation that relates r2(t) to r1(t)
and solve it for r2(t) given the solution for r1(t) given in Part c. As an alternative, we
can use a numerical method.
Use the forward Euler approximation to generate a discrete approximation to the differ-
ential relation between r1(t) and r0(t), as follows. Let r0(t) and r1(t) be approximated
by discrete sequences r0[n] = r0(nT ) and r1[n] = r1(nT ), where T represents the step
size. Then approximate the continuous-time derivative at time nT by a first difference:

dr1(t)
dt

∣∣∣∣
t=nT

≈ r1[n+ 1]− r1[n]
T

.

Solve this difference equation for r1[n + 1] in terms of values of r1[k] and r0[k] where
k < n+ 1 and enter the result below.

r1[n+ 1] = r1[n] + T
20
(
r0[n] − r1[n]

)

20r1[n+ 1]− r1[n]
T

+ r1[n] = r0[n]

r1[n+ 1] = r1[n] + T

20
(
r0[n]− r1[n]

)
Part e. Use your favorite computer language to solve this recursion for the special case
when the input r0[n] is held constant at 0.1m3/s, tank #1 is initially empty, and T =
1 second (see example code in box below). Make a plot of your solution for 0 < t < 60.
Also plot the analytic result from part c on the same axes. Determine the maximum
difference between the analytic and numerical results.

maximum difference: < 0.00094

import math
from pylab import *

ya = [] # analytic
for t in range(60):

ya.append(0.1 - 0.1*math.e**(-t/20.))
print ya
plot(range(60),ya,’r-’)

T = 1
yn = [0] # numerical
for i in range(1,60):

yn.append(yn[i-1]+T/20.*(0.1-yn[i-1]))
print
print yn
stem(range(60),yn,’b-’,’b.’,’r-’)

print
print max([yn[i]-ya[i] for i in range(60)])

show()
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0 10 20 30 40 50 600.00

0.02

0.04

0.06

0.08

0.10

The biggest difference is less than 0.00094.

Part f. Modify your code to calculate numerical approximations to both r1(t) and r2(t).
Plot results for both on the same axes. Explain similarities and differences of these two
results for both small times and large times.

similarities: same initial value, same final value

differences: influx to tank 2 starts more slowly than influx to tank 1

import math
from pylab import *

T = 1
r1 = [0] # initial conditions
r2 = [0]
for i in range(1,60):

r1.append(r1[i-1]+T/20.*(0.1-r1[i-1]))
r2.append(r2[i-1]+T/10.*(r1[i]-r2[i-1]))

print
print r1
stem(range(60),r1,’b-’,’b.’,’r-’)
stem(range(60),r2,’r-’,’r.’,’r-’)
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show()

0 10 20 30 40 50 600.00

0.02

0.04

0.06

0.08

0.10

Since the rate of influx to tank 2 starts more slowly than that to tank 1, the height in
the second tank gets started more slowly than that in the first. Ultimately, the heights of
water in both tanks approach the same value.
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7. Drug dosing

When drugs are used to treat a medical condition, doctors often recommend starting with
a higher dose on the first day than on subsequent days. In this problem, we consider
a simple model to understand why. Assume that the human body is a tank of blood
and that drugs instantly dissolve in the blood when ingested. Further assume that drug
vanishes from the blood (either because it is broken down or because it is flushed by the
kidneys) at a rate that is proportional to drug concentration.
Let x[n] represent the amount of drug taken on day n, and let y[n] represent the total
amount of drug in the blood on day n, just after the dose x[n] has dissolved in the blood,
so that

y[n] = x[n] + αy[n− 1] .

a. Assume that no drug is in the blood before day 0, and that one unit of drug is taken
each day, starting with day 0.
1. Determine an expression for the amount of drug in the blood immediately after

the dose on day n has dissolved.

amount: 1− αn+1

1− α

Solve by iteration:
n y[n]
0 1
1 1 + α
2 1 + α+ α2

3 1 + α+ α2 + α3

· · · · · ·
n

1− αn+1

1− α
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2. Plot the amount of drug in the blood as a function of day number for α = 1

2 ,
3
4 ,

and 7
8 .

α = 1/2

α = 3/4

α = 7/8

0

2

4

6

8

0 5 10 15 20

3. Determine an expression for the steady-state amount of drug in the blood, i.e.,
limn→∞ y[n].

lim
n→∞

y[n]: 1
1− α

y[n] = 1− αn+1

1− α

lim
n→∞

y[n] = 1
1− α
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b. In part a, the amount of drug in the blood ramps up over the first few days, before

reaching a steady-state value. Suggest a different initial dose x[0] that will result in a
more constant amount of drug in the blood (with x[n] remaining at 1 for all n ≥ 1).

initial dose: 1
1− α

Consider what happens to the difference equation

y[n] = x[n] + αy[n− 1]

as n → ∞. The value of y at time n − 1, which is equal to the steady-state value, is
transformed to y at time n, which is also equal to the steady-state value. It follows that
if x[0] were set equal to the steady-state amount of drug in the blood (i.e., x[0] = 1

1−α)
then the system would behave as though it were in steady state from the outset. We
can express this condition mathematically as follows.

y[0] = 1
1− α

y[1] = 1 + α
1

1− α = 1
1− α

y[2] = 1 + α
1

1− α = 1
1− α

· · ·

Thus x[0] should be 1
1−α .


