6.003 Homework \#14 Solutions

Problems

1. Neural signals

The following figure illustrates the measurement of an action potential, which is an electrical pulse that travels along a neuron. Assume that this pulse travels in the positive z direction with constant speed $\nu=10 \mathrm{~m} / \mathrm{s}$ (which is a reasonable assumption for the large unmyelinated fibers found in the squid, where such potentials were first studied). Let $V_{m}(z, t)$ represent the potential that is measured at position z and time t, where time is measured in milliseconds and distance is measured in millimeters. The right panel illustrates $f(t)=V_{m}(30, t)$ which is the potential measured as a function of time t at position $z=30 \mathrm{~mm}$.

Part a. Sketch the dependence of V_{m} on t at position $z=40 \mathrm{~mm}$ (i.e., $V_{m}(40, t)$).
It will take the action potention 1 ms to travel from the reference position at $z=30 \mathrm{~mm}$ to its new position at $z=40 \mathrm{~mm}$. Thus, the new waveform $V_{m}(40, t)$ is a version of $f(t)$ that is shifted by 1 ms to the right.

Part b. Sketch the dependence of V_{m} on z at time $t=0 \mathrm{~ms}$ (i.e., $\left.V_{m}(z, 0)\right)$.
The action potential peaks at $z=30 \mathrm{~mm}$ when $t=2 \mathrm{~ms}$. Since it is traveling to the right at speed $\nu=10 \mathrm{~mm} / \mathrm{ms}$, it must also peak at $z=10 \mathrm{~mm}$ when $t=0$. Thus $f(2)$ must map to $z=10 \mathrm{~mm}$ in the new figure. Similarly, the following function locations map to new positions:

$$
f(0) \text { maps to } 30
$$

$f(1)$ maps to 20
$f(2)$ maps to 10
$f(3)$ maps to 0
$f(4)$ maps to -10

Part c. Determine an expression for $V_{m}(z, t)$ in terms of $f(\cdot)$ and ν. Explain the relations between this expression and your results from parts a and b .
$V_{m}(z, t)=\square f\left(t-\frac{z-30}{\nu}\right)$
The definition of $f(t)$ provides a starting point: $V_{m}(30, t)=f(t)$. In part a, we found that $V_{m}(40, t)=f(t-1)$. This result generalizes: shifting to a more positive location (i.e., adding z_{0} to z) adds a time delay of z_{0} / ν. Expressed as an equation, $V_{m}\left(30+z_{0}, t\right)=$ $f\left(t-\frac{z_{0}}{\nu}\right)$. Substituting $z=30+z_{0}$, we get the general relation

$$
V_{m}(z, t)=f\left(t-\frac{z-30}{\nu}\right) .
$$

To understand our result from part b, substitute $t=0$ to obtain $V_{m}(z, 0)=f\left(0-\frac{z-30}{\nu}\right)$. Thus we must scale the x-axis by ν (to convert the time axis to a space axis) then shift the space axis by 30 mm (so that the peak is now at $z=-10 \mathrm{~mm}$) and finally, flip the plot about the x-axis (bringing the peak to $z=10 \mathrm{~mm}$).

2. Characterizing block diagrams

Consider the system defined by the following block diagram:

a. Determine the system functional $H=\frac{Y}{X}$.

Let W represent the output of the topmost integrator. Then

$$
W=\mathcal{A}\left(X-\frac{1}{2} \mathcal{A} Y\right)=\mathcal{A} X-\frac{1}{2} \mathcal{A}^{2} Y
$$

and

$$
Y=W-\frac{3}{2} \mathcal{A} Y
$$

Substituting the former into the latter we find that

$$
Y=\mathcal{A} X-\frac{1}{2} \mathcal{A}^{2} Y-\frac{3}{2} \mathcal{A} Y
$$

Solving for $\frac{Y}{X}$ yields the answer,

$$
\frac{Y}{X}=\frac{\mathcal{A}}{1+\frac{3}{2} \mathcal{A}+\frac{1}{2} \mathcal{A}^{2}}
$$

b. Determine the poles of the system.

Substituting $\mathcal{A} \rightarrow \frac{1}{s}$ in the system functional yields

$$
\frac{Y}{X}=\frac{\frac{1}{s}}{1+\frac{3}{2} \frac{1}{s}+\frac{1}{2} \frac{1}{s^{2}}}=\frac{s}{s^{2}+\frac{3}{2} s+\frac{1}{2}}=\frac{s}{\left(s+\frac{1}{2}\right)(s+1)}
$$

The poles are then the roots of the denominator: $-\frac{1}{2}$, and -1 .
c. Determine the impulse response of the system.

Expand the system functional using partial fractions:

$$
\frac{Y}{X}=\frac{\mathcal{A}}{1+\frac{3}{2} \mathcal{A}+\frac{1}{2} \mathcal{A}^{2}}=\frac{\alpha \mathcal{A}}{1+\mathcal{A}}+\frac{\beta \mathcal{A}}{1+\frac{1}{2} \mathcal{A}}=\frac{2 \mathcal{A}}{1+\mathcal{A}}-\frac{\mathcal{A}}{1+\frac{1}{2} \mathcal{A}}
$$

Each term in the partial fraction expansion contributes one fundamental mode to h,

$$
h(t)=\left(2 e^{-t}-e^{-t / 2}\right) u(t)
$$

3. Bode Plots

Our goal is to design a stable CT LTI system H by cascading two causal CT LTI systems: H_{1} and H_{2}. The magnitudes of $H(j \omega)$ and $H_{1}(j \omega)$ are specified by the following straightline approximations. We are free to choose other aspects of the systems.

H_{1} and H_{2} have to be stable as well as causal because we're talking about their frequency responses, and H has to be causal because H_{1} and H_{2} are. This implies that all poles must be in the left half-plane.
a. Determine all system functions $H_{1}(s)$ that are consistent with these design specifications, and plot the straight-line approximation to the phase angle of each (as a function of ω).

The frequency response of H_{1} breaks up at $\omega=1$ and then down at $\omega=8$ and 40. The two breaks downward require poles at $s=-8$ and $s=-40$ respectively, The break upward can be achieved with a zero at $s=1$ (blue) or at $s=-1$ (red).

H_{1} could also be multiplied by -1 without having any effect on the magnitude function. Multiplying by -1 would shift the phase curves up or down by π.
b. Determine all system functions $H_{2}(s)$ that are consistent with these design specifications, and plot the straight-line approximation to the phase angle of each (as a function of ω).

To compensate for H_{1}, the frequency response of H_{2} must break downward at $\omega=1$ and upward at $\omega=40$. In addition, H_{2} must break downward at $\omega=8$ so that the slope of H changes from 0 to $-40 \mathrm{~dB} /$ decade at $\omega=10 . H_{2}$ can be achieved with poles at $s=-1$ and -8 and a zero at $s=40$ (blue) or at $s=-40$ (red).

H_{2} could also be multiplied by -1 without having any effect on the magnitude function. Multiplying by -1 would shift the phase curves up or down by π.

4. Controlling Systems

Use a proportional controller (gain K) to control a plant whose input and output are related by

$$
F=\frac{R^{2}}{1+\mathcal{R}-2 \mathcal{R}^{2}}
$$

as shown below.

a. Determine the range of K for which the unit-sample response of the closed-loop system converges to zero.

Using Black's equation, we can write

$$
\frac{Y}{X}=\frac{\frac{K \mathcal{R}^{2}}{1+\mathcal{R}-2 \mathcal{R}^{2}}}{1+\frac{K \mathcal{R}^{2}}{1+\mathcal{R}-2 \mathcal{R}^{2}}}=\frac{K \mathcal{R}^{2}}{1+\mathcal{R}-(2-K) \mathcal{R}^{2}}
$$

The closed-loop poles can be found by substituting $\mathcal{R} \rightarrow \frac{1}{z}$:

$$
\frac{Y}{X}=\frac{K}{z^{2}+z-(2-K)}
$$

and solving for the roots of the denominator:

$$
z=-\frac{1}{2} \pm \sqrt{\frac{1}{4}+2-K}
$$

The unit-sample response will converge to zero iff the poles are inside the unit circle.
When $K=0$, the poles are at $z=-2$ and $z=1$ (not convergent). As K increases, the poles move toward each other, creating a double pole at $z=-\frac{1}{2}$ when $K=\frac{9}{4}$. The response will converge when the pole that started at $z=-2$ reaches $z=-1$, i.e., at $K=2$. The poles will split away from $z=-\frac{1}{2}$ for $K>\frac{9}{4}$ and will stay inside the unit circle if $\frac{1}{4}+2-K>-\frac{3}{4}$, i.e., if $K<3$.
These results are shown in the following graphical representation.

Thus, the unit-sample response will converge if $2<K<3$.
b. Determine the range of K for which the closed-loop poles are real-valued numbers with magnitudes less than 1.

From the plot in the previous part, it follows that the closed-loop poles are on the real axis and have magnitudes less than one when $2<K<\frac{9}{4}$.

5. CT responses

We are given that the impulse response of a CT LTI system is of the form

where A and T are unknown. When the system is subjected to the input

the output $y_{1}(t)$ is zero at $t=5$. When the input is

$$
x_{2}(t)=\sin \left(\frac{\pi t}{3}\right) u(t)
$$

the output $y_{2}(t)$ is equal to 9 at $t=9$. Determine A and T. Also determine $y_{2}(t)$ for all t.

The first fact implies that

$$
y_{1}(5)=\int_{-\infty}^{\infty} x_{1}(\tau) h(5-\tau) d \tau=A \int_{5-T}^{5} x_{1}(\tau) d \tau=0 .
$$

If the lower limit is 1 , the area of the triangle between $\tau=1$ and $\tau=3$ is 2 and cancels the area of the rectangle between $\tau=4$ and $\tau=5$. Therefore $T=4$. From the second fact, we have

$$
\begin{aligned}
9=y_{2}(9) & =A \int_{5}^{9} x_{2}(\tau) d \tau \\
& =A \int_{5}^{9} \sin \left(\frac{\pi \tau}{3}\right) d \tau \\
& =-\left.\frac{A}{\pi / 3} \cos \left(\frac{\pi \tau}{3}\right)\right|_{5} ^{9} \\
& =\frac{9 A}{2 \pi}
\end{aligned}
$$

so $A=2 \pi$.
There are three ranges to consider in computing $y_{2}(t)$. For $t<0$, there is no overlap between $x_{2}(\tau)$ and $h(t-\tau)$ and hence $y_{2}(t)=0$. For $0 \leq t<4$, there is partial overlap and $y_{2}(t)$ is given by

$$
y_{2}(t)=2 \pi \int_{0}^{t} \sin \left(\frac{\pi \tau}{3}\right) d \tau=-\left.\frac{2 \pi}{\pi / 3} \cos \left(\frac{\pi \tau}{3}\right)\right|_{0} ^{t}=6\left(1-\cos \left(\frac{\pi t}{3}\right)\right) .
$$

For $t \geq 4$, the overlap is total and we have

$$
y_{2}(t)=2 \pi \int_{t-4}^{t} \sin \left(\frac{\pi \tau}{3}\right) d \tau=6\left(\cos \left(\frac{\pi(t-4)}{3}\right)-\cos \left(\frac{\pi t}{3}\right)\right) .
$$

Hence

$$
y_{2}(t)= \begin{cases}0, & t<0 \\ 6\left(1-\cos \left(\frac{\pi t}{3}\right)\right), & 0 \leq t<4 \\ 6\left(\cos \left(\frac{\pi(t-4)}{3}\right)-\cos \left(\frac{\pi t}{3}\right)\right), & t \geq 4\end{cases}
$$

6. DT approximation of a CT system

Let $H_{C 1}$ represent a causal CT system that is described by

$$
\dot{y}_{C}(t)+3 y_{C}(t)=x_{C}(t)
$$

where $x_{C}(t)$ represents the input signal and $y_{C}(t)$ represents the output signal.

a. Determine the pole(s) of $H_{C 1}$.

The the Laplace transform of the differential equation to get

$$
s Y_{C}(s)+3 Y_{C}(s)=X_{C}(s)
$$

and solve for $Y_{C}(s) / X_{C}(s)=1 /(s+3)$. The pole is at $s=-3$.
Your task is to design a causal DT system $H_{D 1}$ to approximate the behavior of $H_{C 1}$.

Let $x_{D}[n]=x_{C}(n T)$ and $y_{D}[n]=y_{C}(n T)$ where T is a constant that represents the time between samples. Then approximate the derivative as

$$
\frac{d y_{C}(t)}{d t}=\frac{y_{C}(t+T)-y_{C}(t)}{T} .
$$

b. Determine an expression for the pole(s) of $H_{D 1}$.

Take the Z transform of the difference equation

$$
\frac{y_{D}[n+1]-y_{D}[n]}{T}+3 y_{D}[n]=x_{D}[n]
$$

to obtain

$$
\frac{z Y_{D}(z)-Y_{D}}{T}+3 Y_{D}(z)=X_{D}(z)
$$

Solving

$$
(z-1+3 T) Y_{D}(z)=T X_{D}(z)
$$

so that

$$
H_{D}(z)=\frac{Y_{D}(z)}{X_{D}(z)}=\frac{T}{z-1+3 T} .
$$

There is a pole at $z=1-3 T$.
c. Determine the range of values of T for which $H_{D 1}$ is stable.

Stability requires that the pole be inside the unit circle

$$
-1<1-3 T<1
$$

or

$$
-2<-3 T<0
$$

so that

$$
0<T<\frac{2}{3}
$$

Now consider a second-order causal CT system $H_{C 2}$, which is described by

$$
\ddot{y}_{C}(t)+100 y_{C}(t)=x_{C}(t) .
$$

d. Determine the pole(s) of $H_{C 2}$.

Take the Laplace transform of the differential equation to get

$$
s^{2} Y_{C}+100 Y_{C}=X_{C}
$$

and solve for $Y_{C} / X_{C}=1 /\left(s^{2}+100\right)$. There are poles at $s= \pm j 10$.
Design a causal DT system $H_{D 2}$ to approximate the behavior of $H_{C 2}$. Approximate derivatives as before:

$$
\begin{aligned}
& \dot{y_{C}}(t)=\frac{d y_{C}(t)}{d t}=\frac{y_{C}(t+T)-y_{C}(t)}{T} \text { and } \\
& \frac{d^{2} y_{C}(t)}{d t^{2}}=\frac{\dot{y_{C}}(t+T)-\dot{y_{C}(t)}}{T}
\end{aligned}
$$

e. Determine an expression for the pole(s) of $H_{D 2}$.

$$
\begin{aligned}
\frac{d^{2} y_{C}(t)}{d t^{2}} & =\frac{\dot{y_{C}}(t+T)-\dot{y_{C}}(t)}{T}=\frac{\frac{y_{C}(t+2 T)-y_{C}(t+T)}{T}-\frac{y_{C}(t+T)-y_{C}(t)}{T}}{T} \\
& =\frac{y_{C}(t+2 T)-2 y_{C}(t+T)+y_{C}(t)}{T^{2}} .
\end{aligned}
$$

Substituting to find the difference equation, we get

$$
\frac{y_{D}[n+2]-2 y_{D}[n+1]+y_{D}[n]}{T^{2}}+100 y_{D}[n]=x_{D}[n]
$$

Take the Z transform to find that

$$
\left(z^{2}-2 z+1+100 T^{2}\right) Y_{D}(z)=T^{2} X_{D}(z)
$$

or

$$
\frac{Y_{D}(z)}{X_{D}(z)}=\frac{T^{2}}{z^{2}-2 z+1+100 T^{2}}
$$

The poles are at

$$
z=1 \pm \sqrt{1-1-100 T^{2}}=1 \pm j 10 T
$$

f. Determine the range of values of T for which $H_{D 2}$ stable.

The poles are always outside the unit circle. The system is always unstable.

7. Feedback

Consider the system defined by the following block diagram.

a. Determine the system functional $\frac{Y}{X}$.

We can use Black's equation (previous problem) to find the system functional for the innermost loop:

$$
H_{1}=\frac{1}{1-p_{0} \mathcal{R}} .
$$

Then apply Black's equation for a second time to find the system functional for the next loop:

$$
H_{2}=\frac{H_{1}}{1+H_{1}}=\frac{\frac{1}{1-p_{0} \mathcal{R}}}{1+\frac{1}{1-p_{0} \mathcal{R}}}=\frac{1}{2-p_{0} \mathcal{R}}
$$

Repeat for the outermost loop:

$$
H_{3}=\frac{\alpha H_{2}}{1+\alpha H_{2}}=\frac{\frac{\alpha}{2-p_{0} \mathcal{R}}}{1+\frac{\alpha}{2-p_{0} \mathcal{R}}}=\frac{\alpha}{2+\alpha-p_{0} \mathcal{R}} .
$$

b. Determine the number of closed-loop poles.

The denominator is a first order polynomial in \mathcal{R}. Therefore, there is a single pole. It is located at $z=\frac{p_{0}}{2+\alpha}$.
c. Determine the range of gains (α) for which the closed-loop system is stable.

The closed-loop system will be stable iff the closed-loop pole is inside the unit circle:

$$
|z|=\left|\frac{p_{0}}{2+\alpha}\right|<1
$$

which implies that $|2+\alpha|>\left|p_{0}\right|$. This will be true if $\alpha>\left|p_{0}\right|-2$ or if $\alpha<-\left|p_{0}\right|-2$.
8. Finding a system
a. Determine the difference equation and block diagram representations for a system whose output is $10,1,1,1,1, \ldots$ when the input is $1,1,1,1,1, \ldots$.

Notice that $Y=10 X-9 \mathcal{R} X$. This relation suggests the following difference equation

$$
y[n]=10 x[n]-9 x[n-1]
$$

and block diagram

b. Determine the difference equation and block diagram representations for a system whose output is $1,1,1,1,1, \ldots$ when the input is $10,1,1,1,1, \ldots$.

The difference equation for the inverse relation can be obtained by interchanging y and x in the previous difference equation to get

$$
x[n]=10 y[n]-9 y[n-1] .
$$

So

$$
y[n]=\frac{9 y[n-1]+x[n]}{10},
$$

which has this block diagram

c. Compare the difference equations in parts a and b. Compare the block diagrams in parts a and b.

The difference equations for parts a and b have exactly the same structure. The only difference is that the roles of x and y are reversed. The block diagrams have similar parts (1 delay, 1 adder, 2 gains), but the topologies are completely different. The first is acyclic and the second is cyclic.

9. Lots of poles

All of the poles of a system fall on the unit circle, as shown in the following plot, where the ' 2 ' and ' 3 ' means that the adjacent pole, marked with parentheses, is a repeated pole of order 2 or 3 respectively.

Which of the following choices represents the order of growth of this system's unit-sample response for large n ? Give the letter of your choice plus the information requested.
a. $y[n]$ is periodic. If you choose this option, determine the period.
b. $y[n] \sim A n^{k}$ (where A is a constant). If you choose this option, determine k.
c. $y[n] \sim A z^{n}$ (where A is a constant). If you choose this option, determine z.
d. None of the above. If you choose this option, determine a closed-form asymptotic expression for $y[n]$.

A partial fraction expansion of the system functional will have terms of the following forms:

$$
\frac{1}{1-\mathcal{R}},\left(\frac{1}{1-\mathcal{R}}\right)^{2},\left(\frac{1}{1-\mathcal{R}}\right)^{3}, \frac{1}{1+\mathcal{R}^{2}}, \frac{1}{1+\mathcal{R}}, \text { and }\left(\frac{1}{1+\mathcal{R}}\right)^{2}
$$

The third one will have the fastest growth for large n. Its expansion has the form

$$
\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) \times\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) \times\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right)
$$

Multiplying the first two:

	1	\mathcal{R}	\mathcal{R}^{2}	\mathcal{R}^{3}	\ldots
1	1	\mathcal{R}	\mathcal{R}^{2}	\mathcal{R}^{3}	\ldots
\mathcal{R}	\mathcal{R}	\mathcal{R}^{2}	\mathcal{R}^{3}	\mathcal{R}^{4}	\ldots
\mathcal{R}^{2}	\mathcal{R}^{2}	\mathcal{R}^{3}	\mathcal{R}^{4}	\mathcal{R}^{5}	\ldots
\mathcal{R}^{3}	\mathcal{R}^{3}	\mathcal{R}^{4}	\mathcal{R}^{5}	\mathcal{R}^{6}	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

Group same powers of \mathcal{R} by following reverse diagonals:

$$
1+2 \mathcal{R}+3 \mathcal{R}^{2}+4 \mathcal{R}^{3}+\cdots
$$

Multiplying this by the last term:

	1	\mathcal{R}	\mathcal{R}^{2}	\mathcal{R}^{3}	\cdots
1	1	\mathcal{R}	\mathcal{R}^{2}	\mathcal{R}^{3}	\cdots
$2 \mathcal{R}$	$2 \mathcal{R}$	$2 \mathcal{R}^{2}$	$2 \mathcal{R}^{3}$	$2 \mathcal{R}^{4}$	\cdots
$3 \mathcal{R}^{2}$	$3 \mathcal{R}^{2}$	$3 \mathcal{R}^{3}$	$3 \mathcal{R}^{4}$	$3 \mathcal{R}^{5}$	\cdots
$4 \mathcal{R}^{3}$	$4 \mathcal{R}^{3}$	$4 \mathcal{R}^{4}$	$4 \mathcal{R}^{5}$	$4 \mathcal{R}^{6}$	\cdots
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots

Group same powers of \mathcal{R} by following reverse diagonals:

$$
1+3 \mathcal{R}+6 \mathcal{R}^{2}+10 \mathcal{R}^{3}+\cdots
$$

This expression grows with $(n+1)(n+2) / 2$ which is on the order of n^{2}. Thus b is the correct solution with $k=2$.

10.Relation between time and frequency responses

The impulse response of an LTI system is shown below.

If the input to the system is an eternal cosine, i.e., $x(t)=\cos (\omega t)$, then the output will have the form

$$
y(t)=C \cos (\omega t+\phi)
$$

The impulse response has the form of a decaying sinusoid. The time constant of decay is approximately 2 , so the exponential part has the form $e^{-t / 2}$. The sinusoid has approximately 8 periods in 5 time units so $8 \frac{2 \pi}{\omega_{d}}=5$. Solving this, we find that $\omega_{d} \approx 10$. The impulse response therefore has the form

$$
h(t)=e^{-t / 2} \sin (10 t) u(t)
$$

There are two poles associated with such a response and no zeros. The poles have real parts of $-\sigma=-\frac{1}{2}$ and imaginary parts of $\pm j 10$. The characteristic equation is $\left(s-p_{0}\right)\left(s-p_{1}\right)=$ $\left(s+\frac{1}{2}+j 10\right)\left(s+\frac{1}{2}-j 10\right)=s^{2}+s+100.25=s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}$. Thus $\omega_{0} \approx 10$ and $Q \approx 10$. The system function is the Laplace transform of the impulse response,

$$
H(s)=\frac{\omega_{d}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}} \approx \frac{10}{s^{2}+s+100}
$$

a. Determine ω_{m}, the frequency ω for which the constant C is greatest. What is the value of C when $\omega=\omega_{m}$?

The gain of the system is largest at a frequency $\omega_{m}=\sqrt{\omega_{0}^{2}-2 \sigma^{2}} \approx 10$. The gain is then approximately $Q \approx 10$ times the DC gain, which is $\approx \frac{1}{10}$. Thus $C \approx 1$.
b. Determine ω_{p}, the frequency ω for which the phase angle ϕ is $-\frac{\pi}{4}$. What is the value of C when $\omega=\omega_{p}$?

The phase angle varies from 0 when $\omega=0$ to $-\pi$ as $\omega \rightarrow \infty$. The phase angle is equal to $-\frac{\pi}{2}$ when $\omega=\omega_{0}$ [notice that when $\omega=\omega_{0}$ the ω_{0}^{2} term in the denominator of the system function is cancelled by $\left.s^{2}=\left(j \omega_{0}\right)^{2}\right]$. The phase angle will be $-\frac{\pi}{4}$ when $\omega=\omega_{p}=\omega_{0}-\sigma$ (so that the vector from the upper pole is $\sqrt{2}$ times longer at ω_{p} than at ω_{0}. At ω_{p}, the gain is reduced from its maximum by 3 dB (a factor of $\sqrt{2}$). Thus $C \approx \frac{1}{\sqrt{2}}$.

