### 6.003 Homework \#14

This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted.

## Problems

## 1. Neural signals

The following figure illustrates the measurement of an action potential, which is an electrical pulse that travels along a neuron. Assume that this pulse travels in the positive $z$ direction with constant speed $\nu=10 \mathrm{~m} / \mathrm{s}$ (which is a reasonable assumption for the large unmyelinated fibers found in the squid, where such potentials were first studied). Let $V_{m}(z, t)$ represent the potential that is measured at position $z$ and time $t$, where time is measured in milliseconds and distance is measured in millimeters. The right panel illustrates $f(t)=V_{m}(30, t)$ which is the potential measured as a function of time $t$ at position $z=30 \mathrm{~mm}$.



Part a. Sketch the dependence of $V_{m}$ on $t$ at position $z=40 \mathrm{~mm}$ (i.e., $V_{m}(40, t)$ ).
Part b. Sketch the dependence of $V_{m}$ on $z$ at time $t=0 \mathrm{~ms}$ (i.e., $\left.V_{m}(z, 0)\right)$.
Part c. Determine an expression for $V_{m}(z, t)$ in terms of $f(\cdot)$ and $\nu$. Explain the relations between this expression and your results from parts a and b.
$V_{m}(z, t)=\square$

## 2. Characterizing block diagrams

Consider the system defined by the following block diagram:

a. Determine the system functional $H=\frac{Y}{X}$.
b. Determine the poles of the system.
c. Determine the impulse response of the system.

## 3. Bode Plots

Our goal is to design a stable CT LTI system $H$ by cascading two causal CT LTI systems: $H_{1}$ and $H_{2}$. The magnitudes of $H(j \omega)$ and $H_{1}(j \omega)$ are specified by the following straightline approximations. We are free to choose other aspects of the systems.

a. Determine all system functions $H_{1}(s)$ that are consistent with these design specifications, and plot the straight-line approximation to the phase angle of each (as a function of $\omega$ ).
b. Determine all system functions $H_{2}(s)$ that are consistent with these design specifications, and plot the straight-line approximation to the phase angle of each (as a function of $\omega$ ).

## 4. Controlling Systems

Use a proportional controller (gain $K$ ) to control a plant whose input and output are related by

$$
F=\frac{R^{2}}{1+\mathcal{R}-2 \mathcal{R}^{2}}
$$

as shown below.

a. Determine the range of $K$ for which the unit-sample response of the closed-loop system converges to zero.
b. Determine the range of $K$ for which the closed-loop poles are real-valued numbers with magnitudes less than 1.

## 5. CT responses

We are given that the impulse response of a CT LTI system is of the form

where $A$ and $T$ are unknown. When the system is subjected to the input

the output $y_{1}(t)$ is zero at $t=5$. When the input is

$$
x_{2}(t)=\sin \left(\frac{\pi t}{3}\right) u(t)
$$

the output $y_{2}(t)$ is equal to 9 at $t=9$. Determine $A$ and $T$. Also determine $y_{2}(t)$ for all $t$.

## 6. DT approximation of a CT system

Let $H_{C 1}$ represent a causal CT system that is described by

$$
\dot{y}_{C}(t)+3 y_{C}(t)=x_{C}(t)
$$

where $x_{C}(t)$ represents the input signal and $y_{C}(t)$ represents the output signal.

a. Determine the pole(s) of $H_{C 1}$.

Your task is to design a causal DT system $H_{D 1}$ to approximate the behavior of $H_{C 1}$.


Let $x_{D}[n]=x_{C}(n T)$ and $y_{D}[n]=y_{C}(n T)$ where $T$ is a constant that represents the time between samples. Then approximate the derivative as

$$
\frac{d y_{C}(t)}{d t}=\frac{y_{C}(t+T)-y_{C}(t)}{T}
$$

b. Determine an expression for the pole(s) of $H_{D 1}$.
c. Determine the range of values of $T$ for which $H_{D 1}$ is stable.

Now consider a second-order causal CT system $H_{C 2}$, which is described by

$$
\ddot{y}_{C}(t)+100 y_{C}(t)=x_{C}(t) .
$$

d. Determine the pole(s) of $H_{C 2}$.

Design a causal DT system $H_{D 2}$ to approximate the behavior of $H_{C 2}$. Approximate derivatives as before:

$$
\begin{aligned}
& \dot{y_{C}}(t)=\frac{d y_{C}(t)}{d t}=\frac{y_{C}(t+T)-y_{C}(t)}{T} \text { and } \\
& \frac{d^{2} y_{C}(t)}{d t^{2}}=\frac{\dot{y_{C}}(t+T)-\dot{y_{C}}(t)}{T}
\end{aligned}
$$

e. Determine an expression for the pole(s) of $H_{D 2}$.
f. Determine the range of values of $T$ for which $H_{D 2}$ stable.

## 7. Feedback

Consider the system defined by the following block diagram.

a. Determine the system functional $\frac{Y}{X}$.
b. Determine the number of closed-loop poles.
c. Determine the range of gains $(\alpha)$ for which the closed-loop system is stable.

## 8. Finding a system

a. Determine the difference equation and block diagram representations for a system whose output is $10,1,1,1,1, \ldots$ when the input is $1,1,1,1,1, \ldots$.
b. Determine the difference equation and block diagram representations for a system whose output is $1,1,1,1,1, \ldots$ when the input is $10,1,1,1,1, \ldots$.
c. Compare the difference equations in parts a and b. Compare the block diagrams in parts a and b.

## 9. Lots of poles

All of the poles of a system fall on the unit circle, as shown in the following plot, where the ' 2 ' and ' 3 ' means that the adjacent pole, marked with parentheses, is a repeated pole of order 2 or 3 respectively.


Which of the following choices represents the order of growth of this system's unit-sample response for large $n$ ? Give the letter of your choice plus the information requested.
a. $y[n]$ is periodic. If you choose this option, determine the period.
b. $y[n] \sim A n^{k}$ (where $A$ is a constant). If you choose this option, determine $k$.
c. $y[n] \sim A z^{n}$ (where $A$ is a constant). If you choose this option, determine $z$.
d. None of the above. If you choose this option, determine a closed-form asymptotic expression for $y[n]$.

## 10.Relation between time and frequency responses

The impulse response of an LTI system is shown below.


If the input to the system is an eternal cosine, i.e., $x(t)=\cos (\omega t)$, then the output will have the form

$$
y(t)=C \cos (\omega t+\phi)
$$

a. Determine $\omega_{m}$, the frequency $\omega$ for which the constant $C$ is greatest. What is the value of $C$ when $\omega=\omega_{m}$ ?
b. Determine $\omega_{p}$, the frequency $\omega$ for which the phase angle $\phi$ is $-\frac{\pi}{4}$. What is the value of $C$ when $\omega=\omega_{p}$ ?

