6.003 Homework \#6

Due at the beginning of recitation on October 19, 2011.

Problems

1. Maximum gain

For each of the following systems, find the frequency ω_{m} for which the magnitude of the gain is greatest.
a. $\frac{1}{1+s+s^{2}}$

b. $\frac{s}{1+s+s^{2}}$

c. $\frac{s^{2}}{1+s+s^{2}}$

$$
\omega_{m}=\square
$$

Compare the ω_{m} for these systems and make sure that you can explain qualitatively any similarities or differences.

2. Phase

For a second-order system with poles at -1 and -4 (and no zeros), find the frequency at which the phase is -90°, using any method except for the vector method. Then illustrate and confirm that result using the vector method.
$\omega=\square$

3. CT stability

Consider the following feedback system in which the box represents a causal LTI CT system that is represented by its system function.

a. Determine the range of K for which this feedback system is stable.
\square
b. Determine the range of K for which this feedback system has real-valued poles.
range of K : \square

4. DT stability

Consider the following feedback system in which the box represents a causal LTI DT system that is represented by its system function.

a. Determine the range of K for which this feedback system is stable.
\square
b. Determine the range of K for which this feedback system has real-valued poles.
range of K : \square

Engineering Design Problems

5. Automotive suspension

Wheels are attached to an automobile through a suspension system that is designed to minimize the vibrations of the passenger compartment that result when traveling over bumpy terrain. The suspension system consists of a spring and shock absorber that are both compressed when the wheel passes over a bump, so that the sudden motion of the wheel is not directly transmitted to the passenger compartment. The spring generates a force to hold the passenger compartment at a desired distance above the surface of the road, and the shock absorber adds frictional damping. In this problem, you will determine how much damping is desireable by analyzing a simple model of an automobile's suspension system shown below.

The model consists of a mass M that represents the mass of the car, which is connected through a spring and dashpot to the wheel. The vertical displacement of the wheel from it's equilibrium position is taken as the input $x(t)$. The vertical displacement of the mass from it's equilibrium position is taken as the output $y(t)$. The spring is assumed to obey Hooke's law, so that the force it generates is a constant K times the amount that the spring is compressed relative to it's equilibrium compression. The shock absorber is assumed to generate a force that is a constant B times the velocity with which the shock absorber is compressed. Notice that by referring $x(t)$ and $y(t)$ to their equilibrium positions, the force due to gravity can be ignored. Assume that $M=1$ and $K=1$.
a. Determine the differential equation that relates the input $x(t)$ and output $y(t)$.
b. Determine and plot the impulse response of the system when $B=0$. Based on this result, give a physical explanation of the problem that would result if there were no shock absorber in the system.
c. Determine an expression for the smallest positive damping constant B for which the poles of the system have real values. Sketch the impulse response of the system for this value of B. Based on this result, give a physical explanation of how the shock absorber improves performance of the suspension system.
d. Consider what would happen if B were very large. Sketch the impulse response for the system if $B=100$. Describe how this response might be less desireable than that in part c. Provide a physical explanation for how a stiff shock absorber can degrade system performance.

6. Dial tones

Pressing the buttons on a touch-tone phone generates tones that are used for dialing. Each button produces a pair of tones of the form

$$
x(t)=\cos \left(2 \pi f_{1} t\right)+\cos \left(2 \pi f_{2} t\right)
$$

where f_{1} and f_{2} code the row and column of the button as shown in the following table.

	$f_{2}[\mathrm{~Hz}]$		
$f_{1}[\mathrm{~Hz}]$	1209	1336	1477
697	1	2	3
770	4	5	6
852	7	8	9
941	$*$	0	$\#$

This problem concerns the design of a system to detect the row and column numbers that were pressed by analyzing the signal $x(t)$. The following block diagram illustrates the basic structure of such a system.

The input $x(t)$ is first sampled with $T=10^{-4}$ seconds. The samples are then passed through LTI systems that generate intermediate signals so that $y_{1}[n]$ is large when a button in column 1 is pressed, $y_{2}[n]$ is large when a button in column 2 is pressed, and $y_{3}[n]$ is large when a button in column 3 is pressed. These intermediate signals are then passed through detectors that determine when the signals are bigger than a threshold value Γ. Your task is to design the LTI systems. Each should consist of a system with 2 poles of the form shown in the following pole-zero diagram.

Such systems can be simulated by finding the difference equation that corresponds to the system and then iteratively solving that difference equation.
a. Determine values of r and Ω_{0} so that the $h_{1}[n]$ system generates a large response when the " 1 " key is pressed and a small response when the " 2 " or " 3 " keys are pressed. Your solution should work not only when the input consists of a single key press but also when it consists of sequences of key presses (as when dialing a phone number). Submit hardcopies of your code to generate $y_{1}[n]$ along with a plot of $y_{1}[n]$.
b. Describe how the choice of Ω_{0} affects the output signal $y_{1}[n]$.
c. Describe how the choice of r affects the output signal $y_{1}[n]$. In particular, what limits the maximum acceptable value of r ? Also, what limits the minimum acceptable value of r ?

