6.003 Homework #7

This homework assignment will not be collected. Solutions will be posted.

Problems

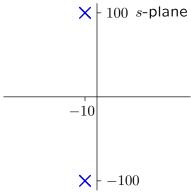
1. Second-order systems

The impulse response of a second-order CT system has the form

$$h(t) = e^{-\sigma t} \cos(\omega_d t + \phi) u(t)$$

where the parameters σ , ω_d , and ϕ are related to the parameters of the characteristic polynomial for the system: $s^2 + Bs + C$.

- **a.** Determine expressions for σ and ω_d (not ϕ) in terms of B and C.
- **b.** Determine
 - the time required for the envelope $e^{-\sigma t}$ of h(t) to diminish by a factor of e,
 - the period of the oscillations in h(t), and
 - the number of periods of oscillation before h(t) diminishes by a factor of e. Express your results as functions of B and C only.
- c. Estimate the parameters in part b for a CT system with the following poles:



The unit-sample response of a second-order DT system has the form

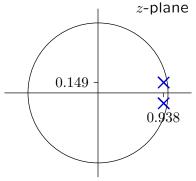
$$h[n] = r_0^n \cos(\Omega_0 n + \Phi) u[n]$$

where the parameters r_0 , Ω_0 , and Φ are related to the parameters of the characteristic polynomial for the system: $z^2 + Dz + E$.

- **d.** Determine expressions for r_0 and Ω_0 (not Φ) in terms of D and E.
- **e.** Determine
 - the length of time required for the envelope r_0^n of h[n] to diminish by a factor of e.
 - the period of the oscillations (i.e., $\frac{2\pi}{\Omega_0}$) in h[n], and
 - the number of periods of oscillation in h[n] before it diminishes by a factor of e. Express your results as functions of D and E only.

 $\mathbf{2}$

f. Estimate the parameters in part e for a DT system with the following poles:

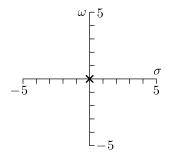


2. Matches

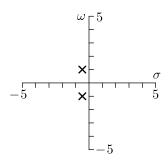
The following plots show pole-zero diagrams, impulse responses, Bode magnitude plots, and Bode angle plots for six causal CT LTI systems. Determine which corresponds to which and fill in the following table.

	h(t)	Magnitude	Angle
PZ diagram 1:			
PZ diagram 2:			
PZ diagram 3:			
PZ diagram 4:			
PZ diagram 5:			
PZ diagram 6:			

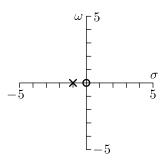
Pole-zero diagram 1



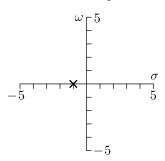
Pole-zero diagram 2



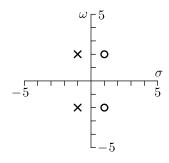
Pole-zero diagram 3



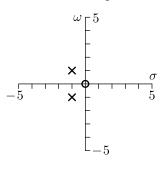
Pole-zero diagram 4



Pole-zero diagram 5

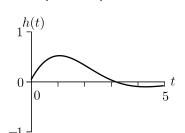


Pole-zero diagram 6

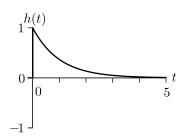


3

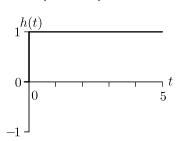
Impulse response 1



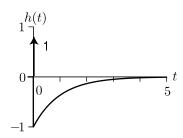
Impulse response 2



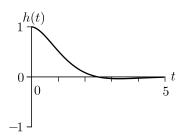
Impulse response 3



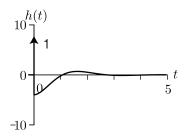
Impulse response 4



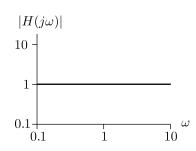
Impulse response 5



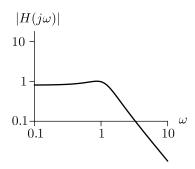
Impulse response 6



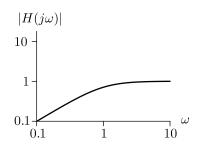
Bode Magnitude 1



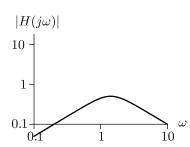
Bode Magnitude 2



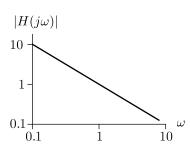
Bode Magnitude 3



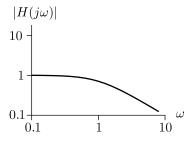
Bode Magnitude 4

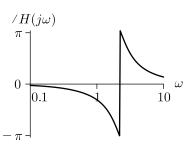


Bode Magnitude 5

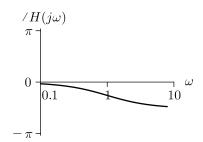


Bode Magnitude 6

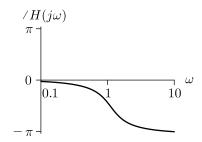




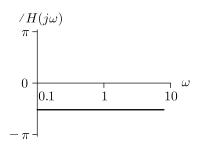
Bode Angle 2



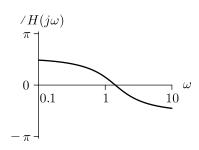
Bode Angle 3



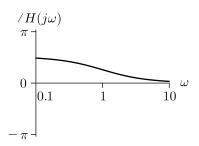
Bode Angle 4



Bode Angle 5



Bode Angle 6

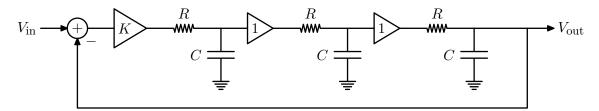


5

Engineering Design Problems

3. Desired oscillations

The following feedback circuit was the basis of Hewlett and Packard's founding patent.



- a. With $R = 1 \,\mathrm{k}\Omega$ and $C = 1 \mu\mathrm{F}$, sketch the pole locations as the gain K varies from 0 to ∞ , showing the scale for the real and imaginary axes. Find the K for which the system is barely stable and label your sketch with that information. What is the system's oscillation period for this K?
- **b.** How do your results change if R is increased to $10 \,\mathrm{k}\Omega$?

4. Robotic steering

Design a steering controller for a car that is moving forward with constant velocity V.

You can control the steering-wheel angle w(t), which causes the angle $\theta(t)$ of the car to change according to

$$\frac{d\theta(t)}{dt} = \frac{V}{d}w(t)$$

where d is a constant with dimensions of length. As the car moves, the transverse position p(t) of the car changes according to

$$\frac{dp(t)}{dt} = V \sin(\theta(t)) \approx V\theta(t).$$

Consider three control schemes:

a.
$$w(t) = Ke(t)$$

b.
$$w(t) = K_v \dot{e}(t)$$

c.
$$w(t) = Ke(t) + K_v \dot{e}(t)$$

where e(t) represents the difference between the desired transverse position x(t) = 0 and the current transverse position p(t). Describe the behaviors that result for each control scheme when the car starts with a non-zero angle $(\theta(0) = \theta_0 \text{ and } p(0) = 0)$. Determine the most acceptable value(s) of K and/or K_v for each control scheme or explain why none are acceptable.