6.003 Homework \#8

Due at the beginning of recitation on November 2, 2011.

Problems

1. Fourier Series

Determine the Fourier series coefficients a_{k} for $x_{1}(t)$ shown below.

Determine the Fourier series coefficients b_{k} for $x_{2}(t)$ shown below.

Determine the Fourier series coefficients c_{k} for $x_{3}(t)$ shown below.

Determine the Fourier series coefficients d_{k} for $x_{4}(t)$ shown below.

$$
\begin{aligned}
& d_{0}=\square \\
& d_{k}=\square \text { for } k \neq 0
\end{aligned}
$$

2. Inverse Fourier series

Determine the CT signals with the following Fourier series coefficients. Assume that the signals are periodic in $T=4$. Enter an expression that is valid for $0 \leq t<4$ (other values can be found by periodic extension).
a. $a_{k}= \begin{cases}j k ; & |k|<3 \\ 0 & \text { otherwise }\end{cases}$

$$
x(t)=\square \quad \text { for } 0 \leq t<4
$$

b. $b_{k}= \begin{cases}1 ; & k \text { odd } \\ 0 ; & k \text { even }\end{cases}$

$$
x(t)=\square \quad \text { for } 0 \leq t<4
$$

3. Matching

Consider the following Fourier series coefficients.

a. Which coefficients (if any) corresponds to the following periodic signal?

$$
x_{1}(t)=2-2 \cos \left(\frac{2 \pi}{3} t\right)
$$

b. Which coefficients (if any) corresponds to the following periodic signal with period $T=3$?

$a_{k}, b_{k}, c_{k}, d_{k}, e_{k}, f_{k}$, or None: \square
c. Which (if any) set corresponds to the following periodic signal with period $T=3$?

4. Input/Output Pairs

The following signals are periodic with period $T=1$.

$$
x_{2}(t)=x_{2}(t+1)
$$

Determine if the following systems could or could not be linear and time-invariant (LTI).

Enter a list of the systems that could NOT be LTI. If your list is empty, enter none.
\square

Engineering Design Problems

5. Overshoot

a. What function $f(t)$ has the Fourier series

$$
\sum_{n=1}^{\infty} \frac{\sin n t}{n} ?
$$

You can evaluate the sum analytically or numerically. Either way, guess a closed form for $f(t)$ and then sketch it.
b. Confirm your conjecture for $f(t)$ by finding the Fourier series coefficients f_{n} for $f(t)$. Compare your result to the expression in the previous part. What happens to the cosine terms?
c. Define the partial sum

$$
f_{N}(t)=\sum_{n=1}^{N} \frac{\sin n t}{n}
$$

Plot some $f_{N}(t)$'s. By what fraction does $f_{N}(t)$ overshoot $f(t)$ at worst? Does that fraction tend to zero or to a finite value as $N \rightarrow \infty$? If it is a finite value, estimate it.
d. Now define the average of the partial sums:

$$
F_{N}(t)=\frac{f_{1}(t)+f_{2}(t)+f_{3}(t)+\cdots+f_{N}(t)}{N}
$$

Plot some $F_{N}(t)$'s. Compare your plots with those of $f_{N}(t)$ that you made in the previous part, and qualitatively explain any differences.

