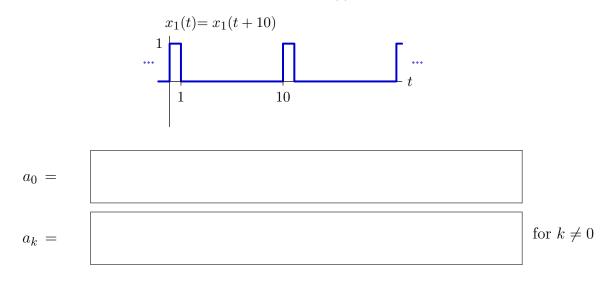
6.003 Homework #8

Due at the beginning of recitation on November 2, 2011.

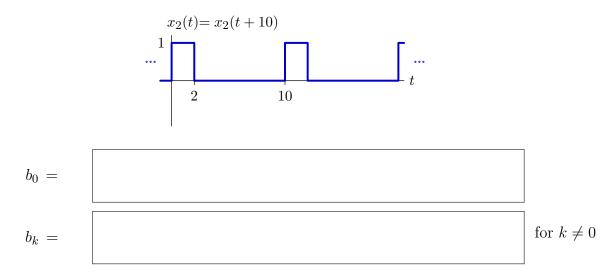
Problems

1. Fourier Series

Determine the Fourier series coefficients a_k for $x_1(t)$ shown below.

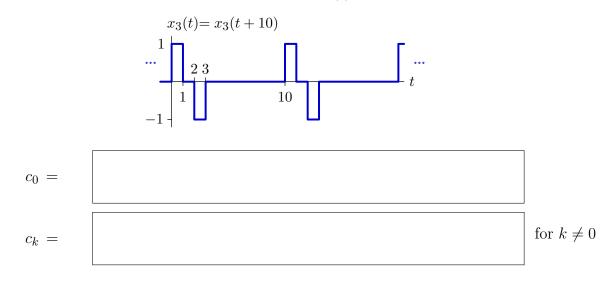


Determine the Fourier series coefficients b_k for $x_2(t)$ shown below.

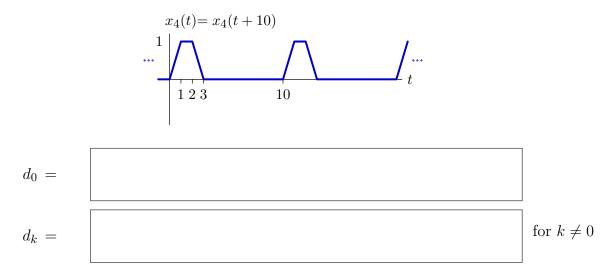


6.003 Homework #8 / Fall 2011

Determine the Fourier series coefficients c_k for $x_3(t)$ shown below.



Determine the Fourier series coefficients d_k for $x_4(t)$ shown below.



2. Inverse Fourier series

Determine the CT signals with the following Fourier series coefficients. Assume that the signals are periodic in T = 4. Enter an expression that is valid for $0 \le t < 4$ (other values can be found by periodic extension).

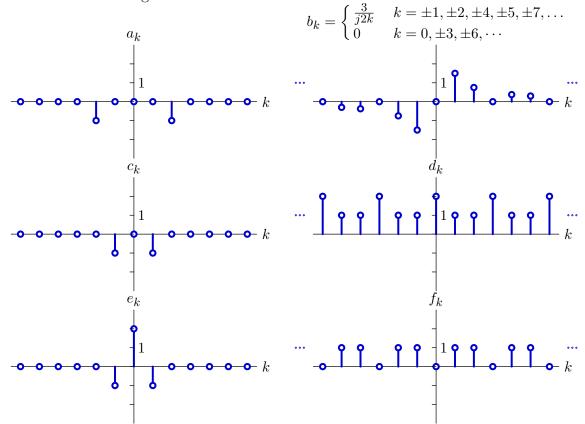
a.
$$a_k = \begin{cases} jk; & |k| < 3\\ 0 & \text{otherwise} \end{cases}$$

 $x(t) =$ for $0 \le t < 4$.



3. Matching

Consider the following Fourier series coefficients.



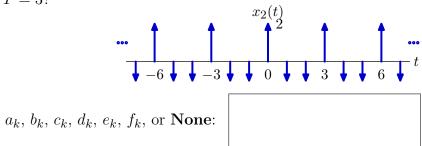
a. Which coefficients (if any) corresponds to the following periodic signal?

$$x_1(t) = 2 - 2\cos\left(\frac{2\pi}{3}t\right)$$

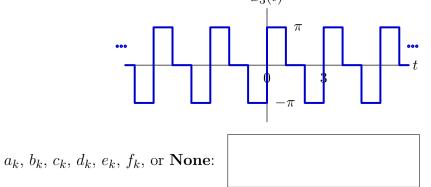
 $a_k, b_k, c_k, d_k, e_k, f_k$, or **None**:

6.003 Homework #8 / Fall 2011

b. Which coefficients (if any) corresponds to the following periodic signal with period T = 3?

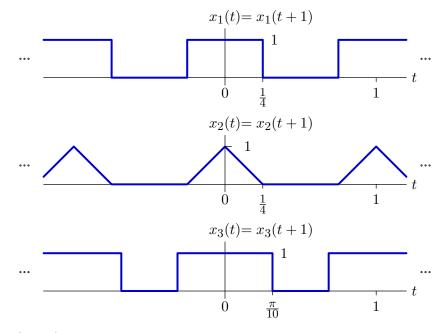


c. Which (if any) set corresponds to the following periodic signal with period T = 3? $x_3(t)$

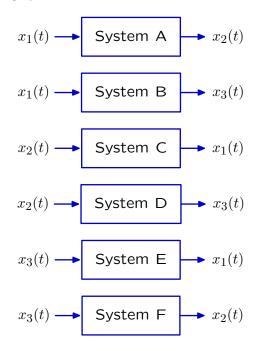


4. Input/Output Pairs

The following signals are periodic with period T = 1.



Determine if the following systems could or could not be linear and time-invariant (LTI).



Enter a list of the systems that could **NOT** be LTI. If your list is empty, enter **none**.

Engineering Design Problems

5. Overshoot

a. What function f(t) has the Fourier series

$$\sum_{n=1}^{\infty} \frac{\sin nt}{n}?$$

You can evaluate the sum analytically or numerically. Either way, guess a closed form for f(t) and then sketch it.

- **b.** Confirm your conjecture for f(t) by finding the Fourier series coefficients f_n for f(t). Compare your result to the expression in the previous part. What happens to the cosine terms?
- c. Define the partial sum

$$f_N(t) = \sum_{n=1}^N \frac{\sin nt}{n}$$

Plot some $f_N(t)$'s. By what fraction does $f_N(t)$ overshoot f(t) at worst? Does that fraction tend to zero or to a finite value as $N \to \infty$? If it is a finite value, estimate it.

d. Now define the average of the partial sums:

$$F_N(t) = \frac{f_1(t) + f_2(t) + f_3(t) + \dots + f_N(t)}{N}$$

Plot some $F_N(t)$'s. Compare your plots with those of $f_N(t)$ that you made in the previous part, and qualitatively explain any differences.