6.003 Homework \#9

Due at the beginning of recitation on November 9, 2011.

Problems

1. Fourier varieties

a. Determine the Fourier series coefficients of the following signal, which is periodic in $T=10$.

\square

b. Determine the Fourier transform of the following signal, which is zero outside the indicated range.

$$
X_{2}(j \omega)=\square
$$

c. What is the relation between the answers to parts a and b? In particular, derive an expression for a_{k} (the solution to part a) in terms of $X_{2}(j \omega)$ (the solution to part b).

$$
a_{k}=\square
$$

d. Determine the time waveform that corresponds to the following Fourier transform, which is zero outside the indicated range.

$$
x_{3}(t)=\square
$$

e. What is the relation between the answers to parts b and d ? In particular, derive an expression for $x_{3}(t)$ (the solution to part d) in terms of $X_{2}(j \omega)$ (the solution to part b).

$$
x_{3}(t)=\square
$$

2. Fourier transform properties

Let $X(j \omega)$ represent the Fourier transform of

$$
x(t)=\left\{\begin{array}{ll}
e^{-t} & 0<t<1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Express the Fourier Transforms of each of the following signals in terms of $X(j \omega)$.

$$
X_{3}(j \omega)=\square
$$

3. Fourier transforms

Find the Fourier transforms of the following signals.
a. $x_{1}(t)=e^{-|t|} \cos (2 t)$

$$
X_{1}(j \omega)=\square
$$

b. $x_{2}(t)=\frac{\sin (2 \pi t)}{\pi(t-1)}$

$$
X_{2}(j \omega)=\square
$$

6.003 Homework \#9 / Fall 2011
c. $x_{3}(t)= \begin{cases}t^{2} & 0<t<1 \\ 0 & \text { otherwise }\end{cases}$

$$
X_{3}(j \omega)=\square
$$

d. $x_{4}(t)=(1-|t|) u(t+1) u(1-t)$

$$
X_{4}(j \omega)=\square
$$

Engineering Design Problem

4. Parseval's theorem

Parseval's theorem relates time- and frequency-domain methods for calculating the average energy of a signal as follows:

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2}
$$

where a_{k} represents the Fourier series coefficients of the periodic signal $x(t)$ with period T.
a. We can derive Parseval's theorem from the properties of CT Fourier series.

1. Let $y(t)=|x(t)|^{2}$. Find the Fourier series coefficients b_{k} of $y(t)$. [Hint: $|x(t)|^{2}=x(t) x^{*}(t)$.]
2. Use the result from the previous part to derive Parseval's theorem.
b. Let $x_{1}(t)$ represent the input to an LTI system, where

$$
x_{1}(t)=\sum_{k=-\infty}^{\infty} \alpha^{|k|} e^{j k \frac{\pi}{4} t}
$$

for $0<\alpha<1$. The frequency response of the system is

$$
H(j \omega)= \begin{cases}1 & |\omega|<W \\ 0 & \text { otherwise } .\end{cases}
$$

What is the minimum value of W so that the average energy in the output signal will be at least 90% of that in the input signal.

5. Filtering

The point of this question is to understand how the magnitude of a filter affects the output and how the angle of a filter affects the output. Consider the following RC circuit as a "filter."

Assume that the input $v_{i}(t)$ is the following square wave.

If the fundamental frequency of the square wave $\left(\frac{2 \pi}{T}\right)$ is equal to the cutoff frequency of the RC circuit $\left(\frac{1}{R C}\right)$ then the output $v_{o}(t)$ will have the following form.

We can think of the RC circuit as "filtering" the square wave as shown below.

The RC filter has two effects: (1) The amplitudes of the Fourier components of the input (vertical red lines in upper panel) are multiplied by the magnitude of the frequency response $(|H(j \omega)|)$. (2) The phase of the Fourier components (red dots in lower panel) are shifted by the phase of the frequency response $(\angle H(j \omega))$.
a. Determine (using whatever method you find convenient) the output that would result if $v_{i}(t)$ were passed through a filter whose magnitude is $|H(j \omega)|$ (as above) but whose phase function is 0 for all frequencies. Compare the result with $v_{o}(t)$ above.
b. Determine (using whatever method you find convenient) the output that would result if $v_{i}(t)$ were passed through a filter whose phase function is $\angle H(j \omega)$ (as above) but whose magnitude function is 1 for all frequencies. Compare the result with $v_{o}(t)$ above.

