6.003: Signals and Systems

Signals and Systems

September 8, 2011

6.003: Signals and Systems

Today's handouts: Single package containing

• Slides for Lecture 1

• Subject Information & Calendar

Lecturer: Denny Freeman (freeman@mit.edu)
Instructors: Elfar Adalsteinsson (elfar@mit.edu)

Russ Tedrake (russt@mit.edu)

TAs: Phillip Nadeau (pnadeau@mit.edu)
Wenbang Xu (wenbang@mit.edu)

Website: mit.edu/6.003

Text: Signals and Systems – Oppenheim and Willsky

6.003: Homework

Doing the homework is essential for understanding the content.

- where subject matter is/isn't learned
- equivalent to "practice" in sports or music

Weekly Homework Assignments

- Conventional Homework Problems plus
- Engineering Design Problems (Python/Matlab)

Open Office Hours!

- Stata Basement (32-044)
- Mondays and Tuesdays, afternoons and early evenings

6.003: Signals and Systems

Collaboration Policy

- **Discussion** of concepts in homework is encouraged
- Sharing of homework or code is not permitted and will be reported to the COD

Firm Deadlines

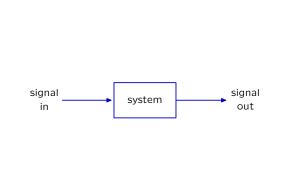
- Homework must be submitted by the published due date
- Each student can submit one late homework assignment without penalty.
- Grades on other late assignments will be multiplied by 0.5 (unless excused by an Instructor, Dean, or Medical Official).

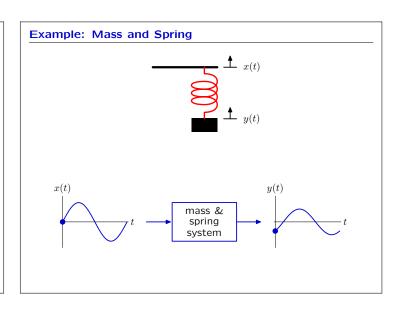
6.003 At-A-Glance

	Tuesday	Wedn	esday	Thursday	Friday
Sep 6	Registration Day: No Classes		R1: Continuous & Discrete Systems	L1: Signals and Systems	R2: Difference Equations
Sep 13	L2: Discrete-Time Systems	HW1 due	R3: Feedback, Cycles, and Modes	L3: Feedback, Cycles, and Modes	R4: CT Systems
Sep 20	L4: CT Operator Representations	HW2 due	Student Holiday: No Recitation	L5: Laplace Transforms	R5: Laplace Transforms
Sep 27	L6: Z Transforms	HW3 due	R6: Z Transforms	L7: Transform Properties	R7: Transform Properties
Oct 4	L8: Convolution; Impulse Response	EX4	Exam 1 No Recitation	L9: Frequency Response	R8: Convolution and Freq. Resp.
Oct 11	Columbus Day: No Lecture	HW5 due	R9: Bode Diagrams	L10: Bode Diagrams	R10: Feedback and Control
Oct 18	L11: DT Feedback and Control	HW6 due	R11: CT Feedback and Control	L12: CT Feedback and Control	R12: CT Feedback and Control
Oct 25	L13: CT Feedback and Control	HW7	Exam 2 No Recitation	L14: CT Fourier Series	R13: CT Fourier Series
Nov 1	L15: CT Fourier Series	EX8 due	R14: CT Fourier Series	L16: CT Fourier Transform	R15: CT Fourier Transform
Nov 8	L17: CT Fourier Transform	HW9 due	R16: DT Fourier Transform	L18: DT Fourier Transform	Veterans Day: No Recitation
Nov 15	L19: DT Fourier Transform	HW10	Exam 3 No Recitation	L20: Fourier Relations	R17: Fourier Relations
Nov 22	L21: Sampling	EX11 due	R18: Fourier Transforms	Thanksgiving: No Lecture	Thanksgiving: No-Recitation
Nov 29	L22: Sampling	HW12 due	R19: Modulation	L23: Modulation	R20: Modulation
Dec 6	L24: Modulation	EX13	R21: Review	L25: Applications of 6.003	Study Period
Dec 13	Breakfast with Staff	EX13	R22: Review	Study Period: No Lecture	Final Exams: No-Recitation
Dec 20	Final Examinations: No Classes				

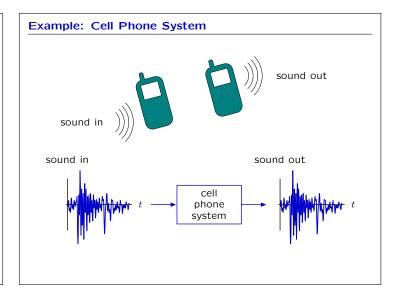
6.003: Signals and Systems

Weekly meetings with class representatives

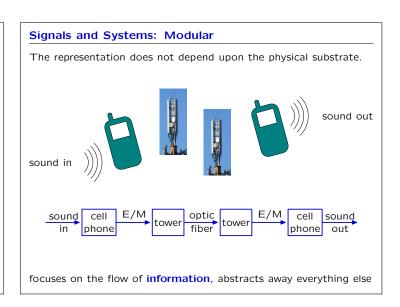

- help staff understand student perspective
- learn about teaching

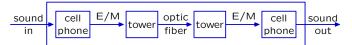

Tentatively meet on Thursday afternoon

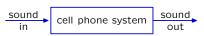
Interested? ... Send email to ${\bf freeman@mit.edu}$


The Signals and Systems Abstraction

Describe a **system** (physical, mathematical, or computational) by the way it transforms an **input signal** into an **output signal**.



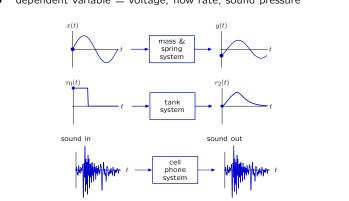



Signals and Systems: Hierarchical

Representations of component systems are easily combined.

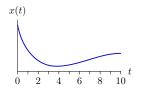
Example: cascade of component systems

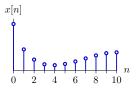
Composite system



Component and composite systems have the same form, and are analyzed with same methods.

Signals and Systems

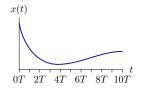

Signals are mathematical functions.

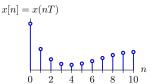

- independent variable = time
- dependent variable = voltage, flow rate, sound pressure

Signals and Systems

continuous "time" (CT) and discrete "time" (DT)

Signals from physical systems often functions of continuous time.


- · mass and spring
- leaky tank

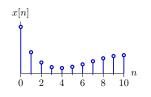

Signals from computation systems often functions of discrete time.

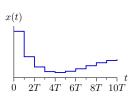
• state machines: given the current input and current state, what is the next output and next state.

Signals and Systems

Sampling: converting CT signals to DT

T =sampling interval

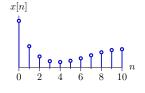

Important for computational manipulation of physical data.

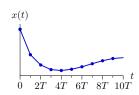

- digital representations of audio signals (e.g., MP3)
- digital representations of images (e.g., JPEG)

Signals and Systems

Reconstruction: converting DT signals to CT

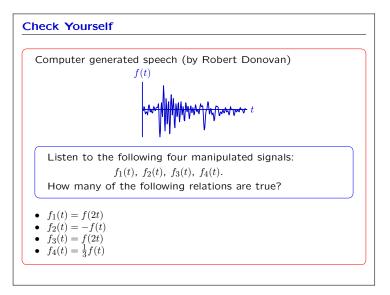
zero-order hold

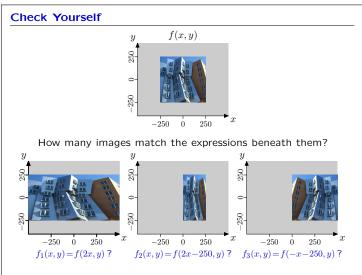

T =sampling interval

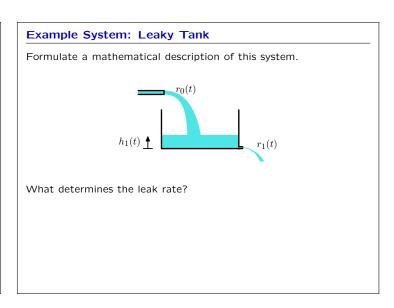

commonly used in audio output devices such as CD players

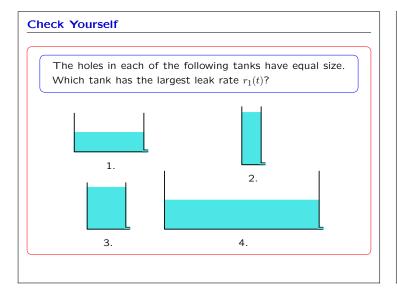
Signals and Systems

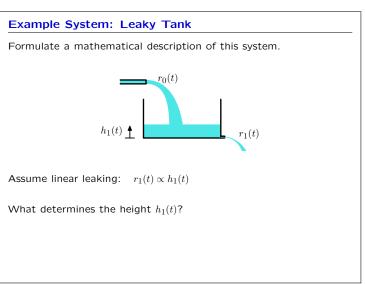
Reconstruction: converting DT signals to CT


piecewise linear

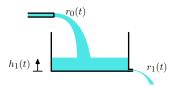



T =sampling interval


commonly used in rendering images



The Signals and Systems Abstraction Describe a system (physical, mathematical, or computational) by the way it transforms an input signal into an output signal. signal system system out



Example System: Leaky Tank

Formulate a mathematical description of this system.

Assume linear leaking: $r_1(t) \propto h_1(t)$

 $\frac{dh_1(t)}{dt} \propto r_0(t) - r_1(t)$ Assume water is conserved:

 $\frac{dr_1(t)}{dt} \propto r_0(t) - r_1(t)$ Solve:

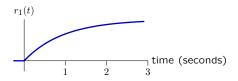
Check Yourself

What are the dimensions of constant of proportionality C?

$$\frac{dr_1(t)}{dt} = C\Big(r_0(t) - r_1(t)\Big)$$

Check Yourself

Which tank has the largest time constant τ ? 3.

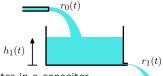

Analysis of the Leaky Tank

Call the constant of proportionality $1/\tau$.

Then τ is called the **time constant** of the system.

$$\frac{dr_1(t)}{dt} = \frac{r_0(t)}{\tau} - \frac{r_1(t)}{\tau}$$

Assume that the tank is initially empty, and then water enters at a constant rate $r_0(t) = 1$. Determine the output rate $r_1(t)$.


Explain the shape of this curve mathematically.

Explain the shape of this curve physically.

Leaky Tanks and Capacitors

Although derived for a leaky tank, this sort of model can be used to represent a variety of physical systems.

Water accumulates in a leaky tank.

Charge accumulates in a capacitor.

 $\frac{dv}{dt} = \frac{i_i - i_o}{C} \propto i_i - i_o \qquad \text{analogous to} \qquad \frac{dh}{dt} \propto r_0 - r_1$