
6.003: Signals and Systems

Signals and Systems

September 8, 2011



6.003: Signals and Systems

Today’s handouts: Single package containing

• Slides for Lecture 1

• Subject Information & Calendar

Lecturer: Denny Freeman (freeman@mit.edu)

Instructors: Elfar Adalsteinsson (elfar@mit.edu)

Russ Tedrake (russt@mit.edu)

TAs: Phillip Nadeau (pnadeau@mit.edu)

Wenbang Xu (wenbang@mit.edu)

Website: mit.edu/6.003

Text: Signals and Systems – Oppenheim and Willsky

mailto:freeman@mit.edu
mailto:elfar@mit.edu
mailto:russt@mit.edu
mailto:pnadeau@mit.edu
mailto:wenbang@mit.edu
http://mit.edu/6.003


6.003: Homework

Doing the homework is essential for understanding the content.

• where subject matter is/isn’t learned

• equivalent to “practice” in sports or music

Weekly Homework Assignments

• Conventional Homework Problems plus

• Engineering Design Problems (Python/Matlab)

Open Office Hours !

• Stata Basement (32-044)

• Mondays and Tuesdays, afternoons and early evenings



6.003: Signals and Systems

Collaboration Policy

• Discussion of concepts in homework is encouraged

• Sharing of homework or code is not permitted and will be re-

ported to the COD

Firm Deadlines

• Homework must be submitted by the published due date

• Each student can submit one late homework assignment without

penalty.

• Grades on other late assignments will be multiplied by 0.5 (unless

excused by an Instructor, Dean, or Medical Official).



6.003 At-A-Glance

Sep 6
Registration Day:

No Classes

R1: Continuous &

Discrete Systems

L1: Signals and

Systems

R2: Difference

Equations

Sep 13
L2: Discrete-Time

Systems

HW1

due

R3: Feedback,

Cycles, and Modes

L3: Feedback,

Cycles, and Modes
R4: CT Systems

Sep 20
L4: CT Operator

Representations

HW2

due

Student Holiday:

No Recitation

L5: Laplace

Transforms

R5: Laplace

Transforms

Sep 27 L6: Z Transforms
HW3

due
R6: Z Transforms

L7: Transform

Properties

R7: Transform

Properties

Oct 4
L8: Convolution;

Impulse Response
EX4

Exam 1

No Recitation

L9: Frequency

Response

R8: Convolution

and Freq. Resp.

Oct 11
Columbus Day:

No Lecture

HW5

due
R9: Bode Diagrams

L10: Bode

Diagrams

R10: Feedback and

Control

Oct 18
L11: DT Feedback

and Control

HW6

due

R11: CT Feedback

and Control

L12: CT Feedback

and Control

R12: CT Feedback

and Control

Oct 25
L13: CT Feedback

and Control
HW7

Exam 2

No Recitation

L14: CT Fourier

Series

R13: CT Fourier

Series

Nov 1
L15: CT Fourier

Series

EX8

due

R14: CT Fourier

Series

L16: CT Fourier

Transform

R15: CT Fourier

Transform

Nov 8
L17: CT Fourier

Transform

HW9

due

R16: DT Fourier

Transform

L18: DT Fourier

Transform

Veterans Day:

No Recitation

Nov 15
L19: DT Fourier

Transform
HW10

Exam 3

No Recitation

L20: Fourier

Relations

R17: Fourier

Relations

Nov 22 L21: Sampling
EX11

due

R18: Fourier

Transforms

Thanksgiving:

No Lecture

Thanksgiving:

No-Recitation

Nov 29 L22: Sampling
HW12

due
R19: Modulation L23: Modulation R20: Modulation

Dec 6 L24: Modulation EX13 R21: Review
L25: Applications

of 6.003
Study Period

Dec 13
Breakfast with

Staff
EX13 R22: Review

Study Period:

No Lecture

Final Exams:

No-Recitation

Dec 20 finals finals finals finals finals

Tuesday Wednesday Thursday Friday

Final Examinations: No Classes



6.003: Signals and Systems

Weekly meetings with class representatives

• help staff understand student perspective

• learn about teaching

Tentatively meet on Thursday afternoon

Interested? ... Send email to freeman@mit.edu

mailto:freeman@mit.edu


The Signals and Systems Abstraction

Describe a system (physical, mathematical, or computational) by

the way it transforms an input signal into an output signal.

system
signal

in

signal

out



Example: Mass and Spring



Example: Mass and Spring

x(t)

y(t)

mass &
spring
system

x(t) y(t)



Example: Mass and Spring
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t t



Example: Tanks

r0(t)

r1(t)

r2(t)

h1(t)

h2(t)

tank
system

r0(t)

tr0(t) r2(t)



Example: Tanks
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Example: Cell Phone System

sound in

sound out

cell
phone
system

sound in sound out



Example: Cell Phone System

sound in

sound out
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phone
system

sound in sound out

t t



Signals and Systems: Widely Applicable

The Signals and Systems approach has broad application: electrical,

mechanical, optical, acoustic, biological, financial, ...

mass &
spring
system

x(t) y(t)

t t

r0(t)

r1(t)

r2(t)

h1(t)

h2(t) tank
system

r0(t) r2(t)

t t

cell
phone
system

sound in sound out

t t



Signals and Systems: Modular

The representation does not depend upon the physical substrate.

sound in

sound out

cell
phone

tower tower
cell

phone
sound

in

E/M optic

fiber

E/M sound
out

focuses on the flow of information, abstracts away everything else



Signals and Systems: Hierarchical

Representations of component systems are easily combined.

Example: cascade of component systems

cell
phone

tower tower
cell

phone
sound

in

E/M optic

fiber

E/M sound
out

Composite system

cell phone system
sound

in
sound

out

Component and composite systems have the same form, and are

analyzed with same methods.



Signals and Systems

Signals are mathematical functions.

• independent variable = time

• dependent variable = voltage, flow rate, sound pressure

mass &
spring
system

x(t) y(t)

t t

tank
system

r0(t) r2(t)

t t

cell
phone
system

sound in sound out

t t



Signals and Systems

continuous “time” (CT) and discrete “time” (DT)

t

x(t)

0 2 4 6 8 10
n

x[n]

0 2 4 6 8 10

Signals from physical systems often functions of continuous time.

• mass and spring

• leaky tank

Signals from computation systems often functions of discrete time.

• state machines: given the current input and current state, what

is the next output and next state.



Signals and Systems

Sampling: converting CT signals to DT

t

x(t)

0T 2T 4T 6T 8T 10T
n

x[n] = x(nT )

0 2 4 6 8 10

T = sampling interval

Important for computational manipulation of physical data.

• digital representations of audio signals (e.g., MP3)

• digital representations of images (e.g., JPEG)



Signals and Systems

Reconstruction: converting DT signals to CT

zero-order hold

n

x[n]

0 2 4 6 8 10
t

x(t)

0 2T 4T 6T 8T 10T

T = sampling interval

commonly used in audio output devices such as CD players



Signals and Systems

Reconstruction: converting DT signals to CT

piecewise linear

n

x[n]

0 2 4 6 8 10
t

x(t)

0 2T 4T 6T 8T 10T

T = sampling interval

commonly used in rendering images



Check Yourself

Computer generated speech (by Robert Donovan)

t

f(t)

Listen to the following four manipulated signals:

f1(t), f2(t), f3(t), f4(t).
How many of the following relations are true?

• f1(t) = f(2t)
• f2(t) = −f(t)
• f3(t) = f(2t)
• f4(t) = 1

3f(t)
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Computer generated speech (by Robert Donovan)
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Listen to the following four manipulated signals:
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Check Yourself

Computer generated speech (by Robert Donovan)

t

f(t)

Listen to the following four manipulated signals:

f1(t), f2(t), f3(t), f4(t).
How many of the following relations are true? 2

• f1(t) = f(2t)
√

• f2(t) = −f(t) X
• f3(t) = f(2t) X
• f4(t) = 1

3f(t)
√



Check Yourself
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How many images match the expressions beneath them?
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x = 0 → f1(0, y) = f(0, y)
√
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√

x = 250 → f2(250, y) = f(250, y)
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x = 0 → f3(0, y) = f(−250, y) X

x = 250 → f3(250, y) = f(−500, y) X



Check Yourself

−250 0 250

−
25

0
0

25
0

y

x

f1(x, y)=f(2x, y) ?
−250 0 250

−
25

0
0

25
0

y

x

f2(x, y)=f(2x−250, y) ?
−250 0 250

−
25

0
0

25
0

y

x

f3(x, y)=f(−x−250, y) ?

−250 0 250
−

25
0

0
25

0

y

x

f(x, y)

How many images match the expressions beneath them?



The Signals and Systems Abstraction

Describe a system (physical, mathematical, or computational) by

the way it transforms an input signal into an output signal.

system
signal

in

signal

out



Example System: Leaky Tank

Formulate a mathematical description of this system.

r0(t)

r1(t)h1(t)

What determines the leak rate?



Check Yourself

The holes in each of the following tanks have equal size.

Which tank has the largest leak rate r1(t)?

3. 4.

1.
2.



Check Yourself

The holes in each of the following tanks have equal size.

Which tank has the largest leak rate r1(t)? 2

3. 4.

1.
2.



Example System: Leaky Tank

Formulate a mathematical description of this system.

r0(t)

r1(t)h1(t)

Assume linear leaking: r1(t) ∝ h1(t)

What determines the height h1(t)?



Example System: Leaky Tank

Formulate a mathematical description of this system.

r0(t)

r1(t)h1(t)

Assume linear leaking: r1(t) ∝ h1(t)

Assume water is conserved:
dh1(t)
dt

∝ r0(t)− r1(t)

Solve:
dr1(t)
dt

∝ r0(t)− r1(t)



Check Yourself

What are the dimensions of constant of proportionality C?

dr1(t)
dt

= C
(
r0(t)− r1(t)

)



Check Yourself

What are the dimensions of constant of proportionality C?

inverse time (to match dimensions of dt)

dr1(t)
dt

= C
(
r0(t)− r1(t)

)



Analysis of the Leaky Tank

Call the constant of proportionality 1/τ .

Then τ is called the time constant of the system.

dr1(t)
dt

= r0(t)
τ
− r1(t)

τ



Check Yourself

Which tank has the largest time constant τ?

3. 4.

1.
2.



Check Yourself

Which tank has the largest time constant τ? 4

3. 4.

1.
2.



Analysis of the Leaky Tank

Call the constant of proportionality 1/τ .

Then τ is called the time constant of the system.

dr1(t)
dt

= r0(t)
τ
− r1(t)

τ

Assume that the tank is initially empty, and then water enters at a

constant rate r0(t) = 1. Determine the output rate r1(t).

time (seconds)

r1(t)

1 2 3

Explain the shape of this curve mathematically.

Explain the shape of this curve physically.



Leaky Tanks and Capacitors

Although derived for a leaky tank, this sort of model can be used to

represent a variety of physical systems.

Water accumulates in a leaky tank.

r0(t)

r1(t)
h1(t)

Charge accumulates in a capacitor.

C v

+

−

ii io

dv

dt
= ii − io

C
∝ ii − io analogous to

dh

dt
∝ r0 − r1


