6.003: Signals and Systems

Signals and Systems

September 8, 2011

6.003: Signals and Systems

Today's handouts: Single package containing

- Slides for Lecture 1
- Subject Information & Calendar

Lecturer: Denny Freeman (freeman@mit.edu) Instructors: Elfar Adalsteinsson (elfar@mit.edu) Russ Tedrake (russt@mit.edu) TAs: Phillip Nadeau (pnadeau@mit.edu) Wenbang Xu (wenbang@mit.edu)

Website: mit.edu/6.003

Text: Signals and Systems – Oppenheim and Willsky

6.003: Homework

Doing the homework is essential for understanding the content.

- where subject matter is/isn't learned
- equivalent to "practice" in sports or music

Weekly Homework Assignments

- Conventional Homework Problems plus
- Engineering Design Problems (Python/Matlab)

Open Office Hours!

- Stata Basement (32-044)
- Mondays and Tuesdays, afternoons and early evenings

6.003: Signals and Systems

Collaboration Policy

- **Discussion** of concepts in homework is encouraged
- **Sharing** of homework or code is not permitted and will be reported to the COD

Firm Deadlines

- Homework must be submitted by the published due date
- Each student can submit **one** late homework assignment without penalty.
- Grades on other late assignments will be multiplied by 0.5 (unless excused by an Instructor, Dean, or Medical Official).

6.003 At-A-Glance

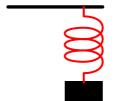
	Tuesday	Wedne	esday	Thursday	Friday
Sep 6	Registration Day:		R1: Continuous &	L1: Signals and	R2: Difference
	No Classes		Discrete Systems	Systems	Equations
Sep 13	L2: Discrete-Time Systems	HW1	R3: Feedback, Cycles, and Modes	L3: Feedback, Cycles, and Modes	R4: CT Systems
		due			
Sep 20	L4: CT Operator Representations	HW2 due	Student Holiday: No Recitation	L5: Laplace Transforms	R5: Laplace Transforms
Sep 27	L6: Z Transforms	HW3 due	R6: Z Transforms	L7: Transform Properties	R7: Transform Properties
Oct 4	L8: Convolution; Impulse Response	EX4	Exam 1 No Recitation	L9: Frequency Response	R8: Convolution and Freq. Resp.
Oct 11	Columbus Day: No Lecture	HW5 due	R9: Bode Diagrams	L10: Bode Diagrams	R10: Feedback and Control
Oct 18	L11: DT Feedback	HW6	R11: CT Feedback	L12: CT Feedback	R12: CT Feedback
	and Control	due	and Control	and Control	and Control
Oct 25	L13: CT Feedback and Control	HW7	Exam 2 No Recitation	L14: CT Fourier Series	R13: CT Fourier Series
Nov 1	L15: CT Fourier	EX8	R14: CT Fourier	L16: CT Fourier	R15: CT Fourier
	Series	due	Series	Transform	Transform
Nov 8	L17: CT Fourier Transform	HW9 due	R16: DT Fourier Transform	L18: DT Fourier Transform	Veterans Day: No Recitation
Nov 15	L19: DT Fourier Transform	HW10	Exam 3 No Recitation	L20: Fourier Relations	R17: Fourier Relations
Nov 22	L21: Sampling	EX11 due	R18: Fourier Transforms	Thanksgiving: No Lecture	Thanksgiving: No-Recitation
Nov 29	L22: Sampling	HW12 due	R19: Modulation	L23: Modulation	R20: Modulation
Dec 6	L24: Modulation	EX13	R21: Review	L25: Applications of 6.003	Study Period
Dec 13	Breakfast with Staff	EX13	R22: Review	Study Period: No Lecture	Final Exams: No-Recitation
Dec 20	Final Examinations: No Classes				

6.003: Signals and Systems

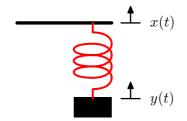
Weekly meetings with class representatives

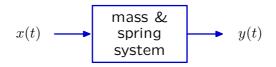
- help staff understand student perspective
- learn about teaching

Tentatively meet on Thursday afternoon

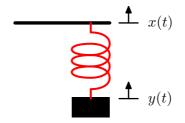

Interested? ... Send email to freeman@mit.edu

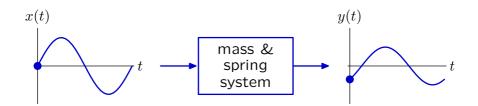
The Signals and Systems Abstraction


Describe a **system** (physical, mathematical, or computational) by the way it transforms an **input signal** into an **output signal**.

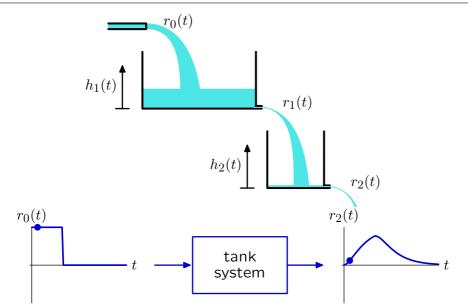


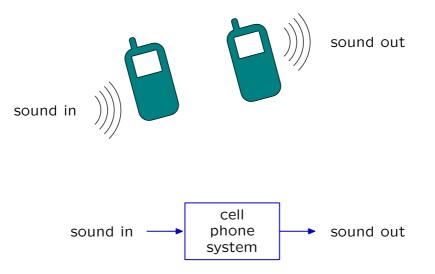
Example: Mass and Spring

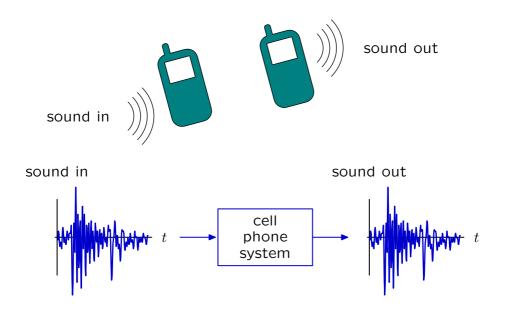



Example: Mass and Spring

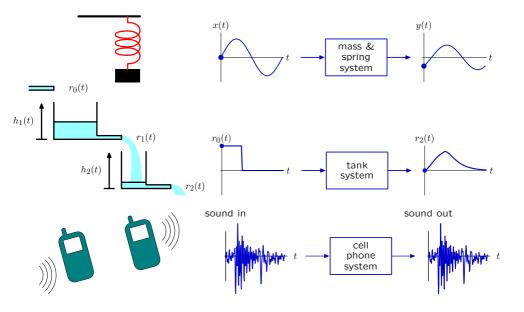
Example: Mass and Spring



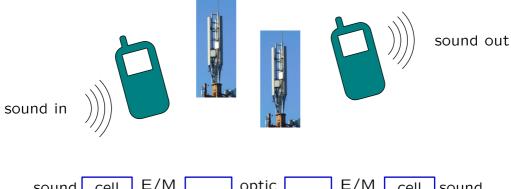

Example: Tanks

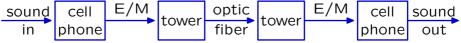

Example: Tanks

Example: Cell Phone System



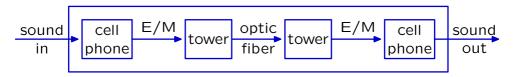
Example: Cell Phone System


Signals and Systems: Widely Applicable

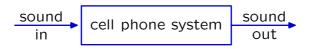

The Signals and Systems approach has broad application: electrical, mechanical, optical, acoustic, biological, financial, ...

Signals and Systems: Modular

The representation does not depend upon the physical substrate.

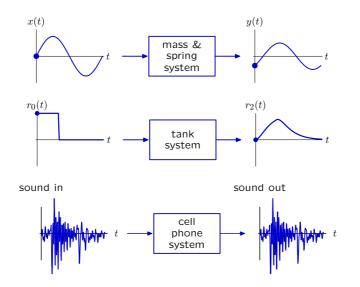


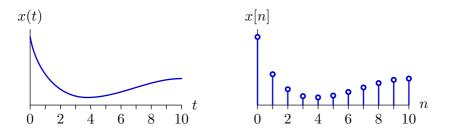
focuses on the flow of information, abstracts away everything else


Signals and Systems: Hierarchical

Representations of component systems are easily combined.

Example: cascade of component systems

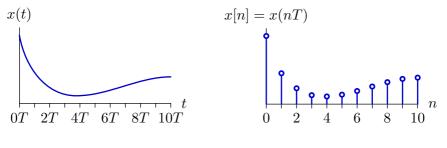

Composite system


Component and composite systems have the same form, and are analyzed with same methods.

Signals are mathematical functions.

- independent variable = time
- dependent variable = voltage, flow rate, sound pressure

continuous "time" (CT) and discrete "time" (DT)

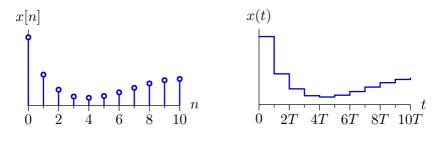

Signals from physical systems often functions of continuous time.

- mass and spring
- leaky tank

Signals from computation systems often functions of discrete time.

• state machines: given the current input and current state, what is the next output and next state.

Sampling: converting CT signals to DT

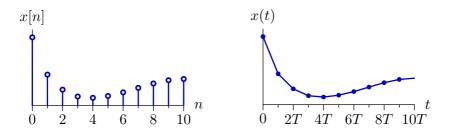

T =sampling interval

Important for computational manipulation of physical data.

- digital representations of audio signals (e.g., MP3)
- digital representations of images (e.g., JPEG)

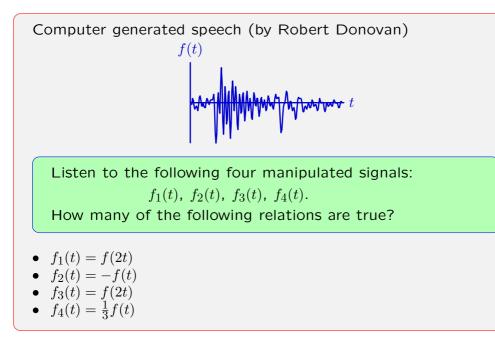
Reconstruction: converting DT signals to CT

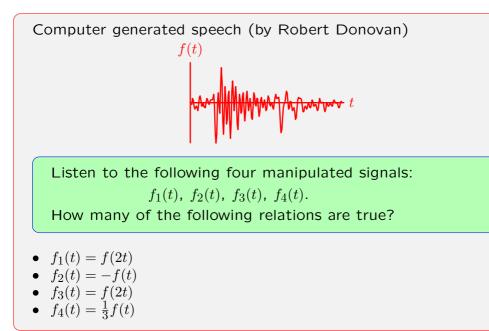
zero-order hold

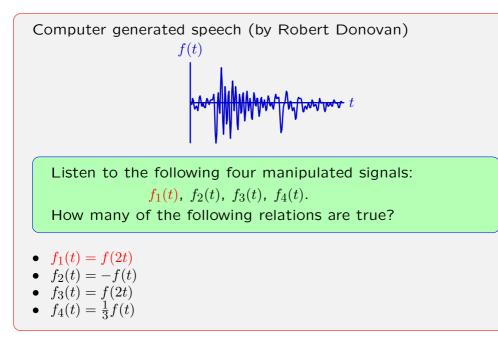


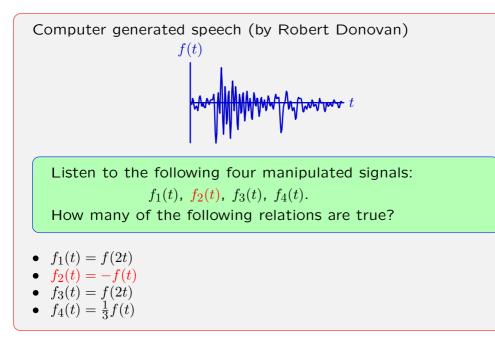
T =sampling interval

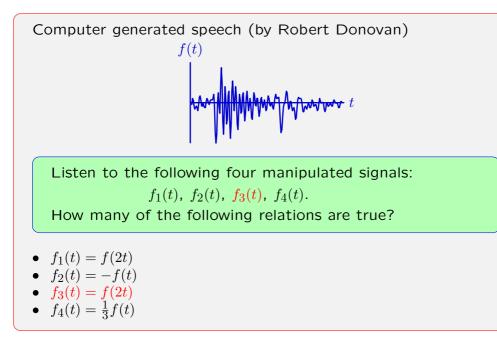
commonly used in audio output devices such as CD players

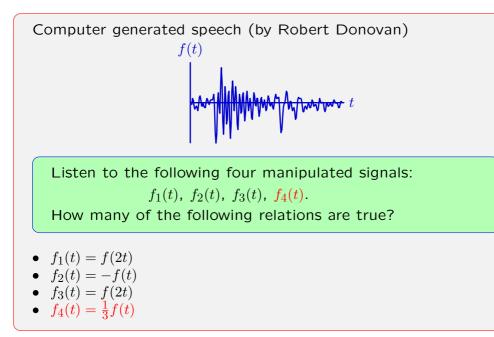

Reconstruction: converting DT signals to CT

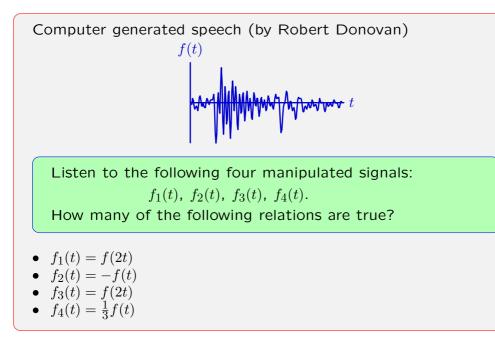

piecewise linear

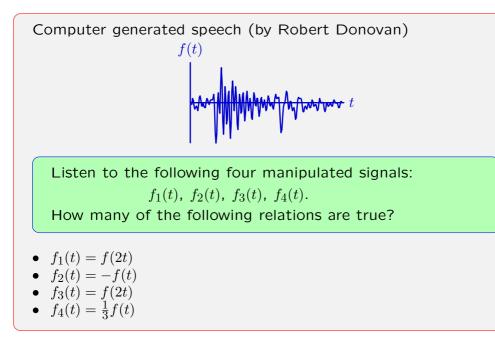


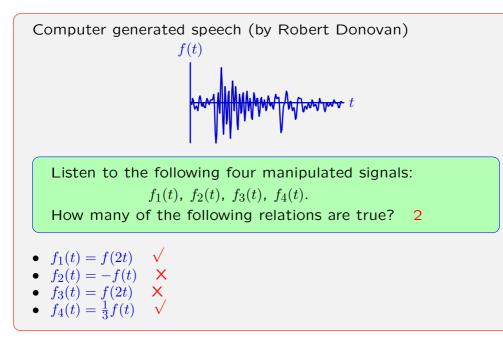

T =sampling interval

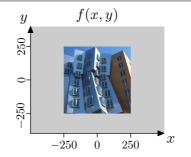

commonly used in rendering images

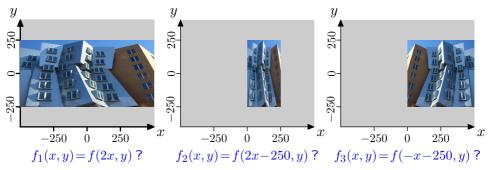


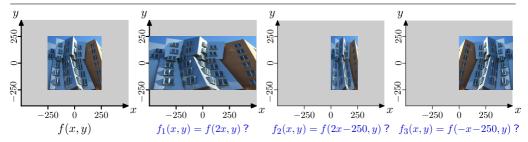




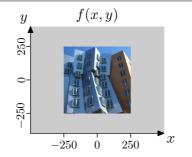






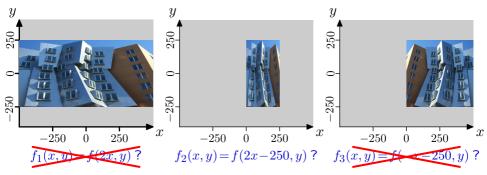


How many images match the expressions beneath them?



$$x = 0 \rightarrow f_1(0, y) = f(0, y) \qquad \checkmark$$

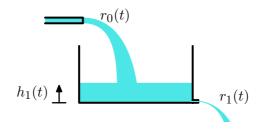
 $x = 250 \rightarrow f_1(250, y) = f(500, y) \qquad \times$


$$\begin{array}{ll} x = 0 & \to f_2(0, y) = f(-250, y) \\ x = 250 & \to f_2(250, y) = f(250, y) \end{array} \checkmark$$

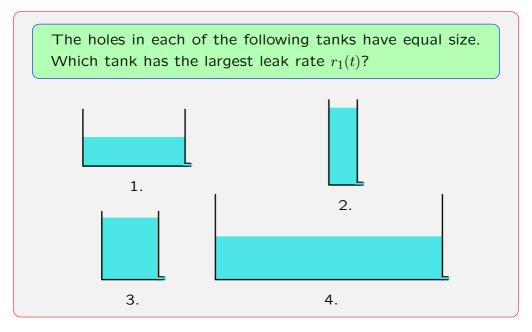
$$x = 0 \qquad \rightarrow f_3(0, y) = f(-250, y) \qquad \times$$

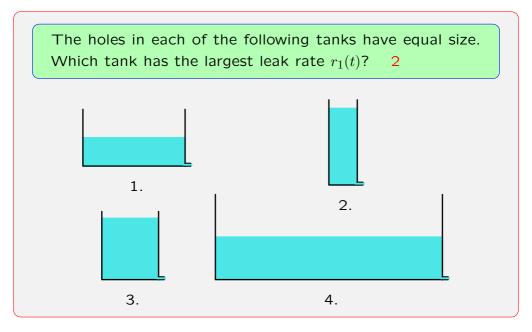
 $x = 250 \rightarrow f_3(250, y) = f(-500, y)$ ×

How many images match the expressions beneath them?


The Signals and Systems Abstraction

Describe a **system** (physical, mathematical, or computational) by the way it transforms an **input signal** into an **output signal**.



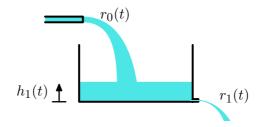

Example System: Leaky Tank

Formulate a mathematical description of this system.

What determines the leak rate?

Example System: Leaky Tank

Formulate a mathematical description of this system.



Assume linear leaking: $r_1(t) \propto h_1(t)$

What determines the height $h_1(t)$?

Example System: Leaky Tank

Formulate a mathematical description of this system.

Assume linear leaking:

 $r_1(t) \propto h_1(t)$

Assume water is conserved:

$$\frac{dh_1(t)}{dt} \propto r_0(t) - r_1(t)$$

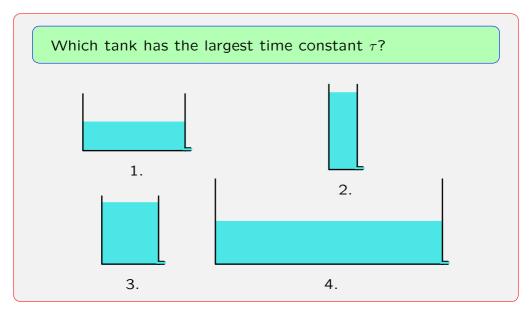
$$\frac{dr_1(t)}{dt} \propto r_0(t) - r_1(t)$$

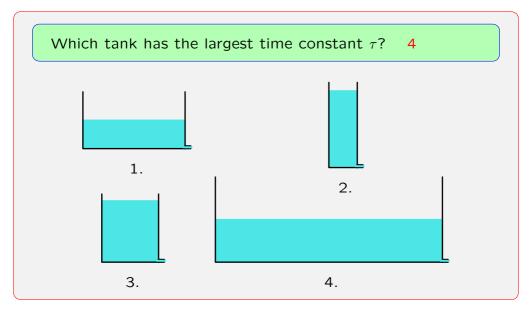
Solve:

What are the dimensions of constant of proportionality C?

$$\frac{dr_1(t)}{dt} = C\Big(r_0(t) - r_1(t)\Big)$$

What are the dimensions of constant of proportionality C? inverse time (to match dimensions of dt)

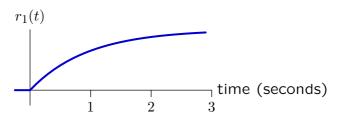

$$\frac{dr_1(t)}{dt} = C\Big(r_0(t) - r_1(t)\Big)$$


Analysis of the Leaky Tank

Call the constant of proportionality $1/\tau$.

Then τ is called the **time constant** of the system.

$$\frac{dr_1(t)}{dt} = \frac{r_0(t)}{\tau} - \frac{r_1(t)}{\tau}$$

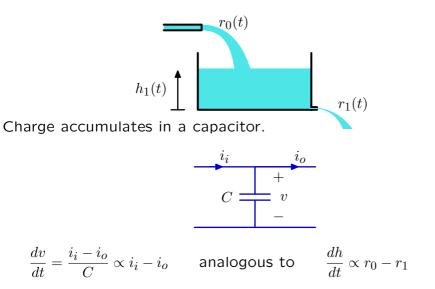

Analysis of the Leaky Tank

Call the constant of proportionality $1/\tau$.

Then τ is called the **time constant** of the system.

$$\frac{dr_1(t)}{dt} = \frac{r_0(t)}{\tau} - \frac{r_1(t)}{\tau}$$

Assume that the tank is initially empty, and then water enters at a constant rate $r_0(t) = 1$. Determine the output rate $r_1(t)$.


Explain the shape of this curve mathematically.

Explain the shape of this curve physically.

Leaky Tanks and Capacitors

Although derived for a leaky tank, this sort of model can be used to represent a variety of physical systems.

Water accumulates in a leaky tank.

