6.003: Signals and Systems

Discrete-Time Systems

September 13, 2011

Discrete-Time Systems

We start with discrete-time (DT) systems because they

- are conceptually simpler than continuous-time systems
- illustrate same important modes of thinking as continuous-time
- are increasingly important (digital electronics and computation)

Difference Equations

Difference equations are mathematically precise and compact.
Example:

$$
y[n]=x[n]-x[n-1]
$$

Let $x[n]$ equal the "unit sample" signal $\delta[n]$,

$$
\delta[n]= \begin{cases}1, & \text { if } n=0 \\ 0, & \text { otherwise }\end{cases}
$$

We will use the unit sample as a "primitive" (building-block signal) to construct more complex signals.

Homework

Doing the homework is essential to understanding the content.
Weekly Homework Assigments

- tutor (exam-type) problems:
answers are automatically checked to provide quick feedback
- engineering design (real-world) problems:
graded by a human
Learning doesn't end when you have submitted your work!
- solutions will be posted on Wednesdays at 5 pm
- read solutions to find errors and to see alternative approaches
- mark the errors in your previously submitted work
- submit the markup by Friday at 5 pm
- identify ALL errors and get back half of the points you lost!

Multiple Representations of Discrete-Time Systems

Systems can be represented in different ways to more easily address different types of issues.

Verbal description: 'To reduce the number of bits needed to store a sequence of large numbers that are nearly equal, record the first number, and then record successive differences.'

Difference equation:

$$
y[n]=x[n]-x[n-1]
$$

Block diagram:

We will exploit particular strengths of each of these representations.

Check Yourself

Solve
$y[n]=x[n]-x[n-1]$
given

$$
x[n]=\delta[n]
$$

How many of the following are true?

1. $y[2]>y[1]$
2. $y[3]>y[2]$
3. $y[2]=0$
4. $y[n]-y[n-1]=x[n]-2 x[n-1]+x[n-2]$
5. $y[119]=0$

Step-By-Step Solutions

Block diagrams are also useful for step-by-step analysis.

Represent $y[n]=x[n]-x[n-1]$ with a block diagram: start "at rest"

From Samples to Signals

Lumping all of the (possibly infinite) samples into a single object the signal - simplifies its manipulation.

This lumping is an abstraction that is analogous to

- representing coordinates in three-space as points
- representing lists of numbers as vectors in linear algebra
- creating an object in Python

Check Yourself

DT systems can be described by difference equations and/or block diagrams.

Difference equation:

$$
y[n]=x[n]-x[n-1]
$$

Block diagram:


```
In what ways are these representations different?
```


From Samples to Signals

Operators manipulate signals rather than individual samples.

Nodes represent whole signals (e.g., X and Y).
The boxes operate on those signals:

- Delay $=$ shift whole signal to right 1 time step
- Add $=$ sum two signals
- $\quad-1$: multiply by -1

Signals are the primitives.
Operators are the means of combination.

Operator Notation

Symbols can now compactly represent diagrams.
Let \mathcal{R} represent the right-shift operator:

$$
Y=\mathcal{R}\{X\} \equiv \mathcal{R} X
$$

where X represents the whole input signal $(x[n]$ for all n) and Y represents the whole output signal ($y[n]$ for all n)

Representing the difference machine

with \mathcal{R} leads to the equivalent representation

$$
Y=X-\mathcal{R} X=(1-\mathcal{R}) X
$$

Operator Notation: Check Yourself

Let $Y=\mathcal{R} X$. Which of the following is/are true:
$y[n]=x[n]$ for all n
$y[n+1]=x[n]$ for all n
$y[n]=x[n+1]$ for all n
$y[n-1]=x[n]$ for all n
none of the above

Operator Representation of a Cascaded System

System operations have simple operator representations.
Cascade systems \rightarrow multiply operator expressions.

Using operator notation:

$$
\begin{aligned}
& Y_{1}=(1-\mathcal{R}) X \\
& Y_{2}=(1-\mathcal{R}) Y_{1}
\end{aligned}
$$

Substituting for Y_{1} :

$$
Y_{2}=(1-\mathcal{R})(1-\mathcal{R}) X
$$

Operator Algebra

Operator expressions can be manipulated as polynomials.

Using difference equations:

$$
\begin{aligned}
y_{2}[n] & =y_{1}[n]-y_{1}[n-1] \\
& =(x[n]-x[n-1])-(x[n-1]-x[n-2]) \\
& =x[n]-2 x[n-1]+x[n-2]
\end{aligned}
$$

Using operator notation:

$$
\begin{aligned}
Y_{2} & =(1-\mathcal{R}) Y_{1}=(1-\mathcal{R})(1-\mathcal{R}) X \\
& =(1-\mathcal{R})^{2} X \\
& =\left(1-2 \mathcal{R}+\mathcal{R}^{2}\right) X
\end{aligned}
$$

Operator Algebra

Operator notation facilitates seeing relations among systems.
"Equivalent" block diagrams (assuming both initially at rest):

Equivalent operator expressions:

$$
(1-\mathcal{R})(1-\mathcal{R})=1-2 \mathcal{R}+\mathcal{R}^{2}
$$

The operator equivalence is much easier to see.

Check Yourself

How many of the following systems are equivalent to

$$
Y=\left(4 \mathcal{R}^{2}+4 \mathcal{R}+1\right) X
$$

Operator Algebra: Explicit and Implicit Rules

Recipes versus constraints.

Recipe: subtract a right-shifted version of the input signal from a copy of the input signal.

Constraint: the difference between Y and $\mathcal{R} Y$ is X.

But how does one solve such a constraint?

Example: Accumulator

The response of the accumulator system could also be generated by a system with infinitely many paths from input to output, each with one unit of delay more than the previous.

$$
Y=\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) X
$$

Example: Accumulator

The reciprocal of $1-\mathcal{R}$ can also be evaluated using synthetic division

Therefore

$$
\frac{1}{1-\mathcal{R}}=1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\mathcal{R}^{4}+\cdots
$$

Example: Accumulator

Try step-by-step analysis: it always works. Start "at rest."

Find $y[n]$ given $x[n]=\delta[n]: \quad y[n]=x[n]+y[n-1]$
$y[0]=x[0]+y[-1]=1+0=1$
$y[1]=x[1]+y[0] \quad=0+1=1$
$y[2]=x[2]+y[1] \quad=0+1=1$

Persistent response to a transient input!

Example: Accumulator

These systems are equivalent in the sense that if each is initially at rest, they will produce identical outputs from the same input.

$$
(1-\mathcal{R}) Y_{1}=X_{1} \quad \Leftrightarrow ? \quad Y_{2}=\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) X_{2}
$$

Proof: Assume $X_{2}=X_{1}$:

$$
\begin{aligned}
Y_{2} & =\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) X_{2} \\
& =\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) X_{1} \\
& =\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right)(1-\mathcal{R}) Y_{1} \\
& =\left(\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right)-\left(\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right)\right) Y_{1} \\
& =Y_{1}
\end{aligned}
$$

It follows that $Y_{2}=Y_{1}$.

It also follows that $(1-\mathcal{R})$ and $\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right)$ are reciprocals.

Feedback

Systems with signals that depend on previous values of the same signal are said to have feedback.

Example: The accumulator system has feedback.

By contrast, the difference machine does not have feedback.

Cyclic Signal Paths, Feedback, and Modes

Block diagrams help visualize feedback.
Feedback occurs when there is a cyclic signal flow path.

acyclic

cyclic

Acyclic: all paths through system go from input to output with no cycles.
Cyclic: at least one cycle.

Feedback, Cyclic Signal Paths, and Modes

The effect of feedback can be visualized by tracing each cycle through the cyclic signal paths.

Each cycle creates another sample in the output.

Check Yourself

How many of the following systems have cyclic signal paths?

Analysis of Cyclic Systems: Geometric Growth

If traversing the cycle decreases or increases the magnitude of the signal, then the fundamental mode will decay or grow, respectively.

If the response decays toward zero, then we say that it converges.
Otherwise, we it diverges

Check Yourself

How many of these systems have divergent unit-sample responses?

Multiple Representations of Discrete-Time Systems

Now you know four representations of discrete-time systems.
Verbal descriptions: preserve the rationale.
"To reduce the number of bits needed to store a sequence of large numbers that are nearly equal, record the first number, and then record successive differences."

Difference equations: mathematically compact.

$$
y[n]=x[n]-x[n-1]
$$

Block diagrams: illustrate signal flow paths

Operator representations: analyze systems as polynomials.

$$
Y=(1-\mathcal{R}) X
$$

