6.003: Signals and Systems

Z Transform

Concept Map: Discrete-Time Systems

Relations among representations.

Concept Map: Discrete-Time Systems

Relation between System Functional and System Function.

Concept Map: Discrete-Time Systems
Multiple representations of DT systems.

System Functional

$\frac{Y}{X}=\mathcal{H}(\mathcal{R})=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}$

Unit-Sample Response

$h[n]: 1,1,2,3,5,8,13,21,34,55, \ldots$

Difference Equation

$y[n]=x[n]+y[n-1]+y[n-2]$

System Function

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{z^{2}}{z^{2}-z-1}
$$

Concept Map: Discrete-Time Systems

Two interpretations of "Delay."

Check Yourself

What is relation of System Functional to Unit-Sample Response

System Functional

$$
\frac{Y}{X}=\mathcal{H}(\mathcal{R})=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}
$$

Unit-Sample Response
$h[n]: 1,1,2,3,5,8,13,21,34,55, \ldots$

> Difference Equation
> $y[n]=x[n]+y[n-1]+y[n-2]$

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{z^{2}}{z^{2}-z-1}
$$

Simple Z transforms

Find the Z transform of the unit-sample signal.

$x[n]=\delta[n]$
$X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=x[0] z^{0}=1$

Check Yourself

What is the Z transform of the following signal.

1. $\frac{1}{1-\frac{7}{8} z}$
2. $\frac{1}{1-\frac{7}{8} z^{-1}}$
3. $\frac{z}{1-\frac{7}{8} z}$
4. $\frac{z^{-1}}{1-\frac{7}{8} z^{-1}}$
5. none

Z Transform

We call the relation between $H(z)$ and $h[n]$ the Z transform.

$$
H(z)=\sum_{n} h[n] z^{-n}
$$

Z transform maps a function of discrete time n to a function of z.

Although motivated by system functions, we can define a Z transform for any signal.

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Notice that we include $n<0$ as well as $n>0 \rightarrow$ bilateral Z transform (there is also a unilateral Z transform with similar but not identical properties).

Simple Z transforms

Find the Z transform of a delayed unit-sample signal.

$$
\begin{aligned}
& x[n]=\delta[n-1] \\
& X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=x[1] z^{-1}=z^{-1}
\end{aligned}
$$

Z Transform Pairs

The signal $x[n]$, which is a function of time n, maps to a \mathbf{Z} transform $X(z)$, which is a function of z.

$$
x[n]=\left(\frac{7}{8}\right)^{n} u[n] \quad \leftrightarrow \quad X(z)=\frac{1}{1-\frac{7}{8} z^{-1}}
$$

For what values of z does $X(z)$ make sense?

Z Transform Pairs

The signal $x[n]$, which is a function of time n, maps to a \mathbf{Z} transform $X(z)$, which is a function of z.

$$
x[n]=\left(\frac{7}{8}\right)^{n} u[n] \quad \leftrightarrow \quad X(z)=\frac{1}{1-\frac{7}{8} z^{-1}}
$$

For what values of z does $X(z)$ make sense?

The Z transform is only defined for values of z for which the defining sum converges.

$$
X(z)=\sum_{n=-\infty}^{\infty}\left(\frac{7}{8}\right)^{n} z^{-n} u[n]=\sum_{n=0}^{\infty}\left(\frac{7}{8}\right)^{n} z^{-n}=\frac{1}{1-\frac{7}{8} z^{-1}}
$$

Therefore $\left|\frac{7}{8} z^{-1}\right|<1$, i.e., $|z|>\frac{7}{8}$.

Z Transform Mathematics

Based on properties of the Z transform.

Linearity:

if	$x_{1}[n]$	\leftrightarrow	$X_{1}(z)$	for z in ROC_{1}
and	$x_{2}[n]$	\leftrightarrow	$X_{2}(z)$	for z in ROC_{2}
then	$x_{1}[n]+x_{2}[n]$	\leftrightarrow	$X_{1}(z)+X_{2}(z)$	for z in $\left(\mathrm{ROC}_{1} \cap \mathrm{ROC}_{2}\right)$.

Let $y[n]=x_{1}[n]+x_{2}[n]$ then

$$
\begin{aligned}
Y(z) & =\sum_{n=-\infty}^{\infty} y[n] z^{-n} \\
& =\sum_{n=-\infty}^{\infty}\left(x_{1}[n]+x_{2}[n]\right) z^{-n} \\
& =\sum_{n=-\infty}^{\infty} x_{1}[n] z^{-n}+\sum_{n=-\infty}^{\infty} x_{2}[n] z^{-n} \\
& =X_{1}(z)+X_{2}(z)
\end{aligned}
$$

Rational Polynomials

A system that can be described by a linear difference equation with constant coefficients can also be described by a Z transform that is a ratio of polynomials in z.

$$
b_{0} y[n]+b_{1} y[n-1]+b_{2} y[n-2]+\cdots=a_{0} x[n]+a_{1} x[n-1]+a_{2} x[n-2]+\cdots
$$

Taking the \mathbf{Z} transform of both sides, and applying the delay property

$$
\begin{aligned}
& b_{0} Y(z)+b_{1} z^{-1} Y(z)+b_{2} z^{-2} Y(z)+\cdots=a_{0} X(z)+a_{1} z^{-1} X(z)+a_{2} z^{-2} X(z)+\cdots \\
& \begin{aligned}
H(z)=\frac{Y(z)}{X(z)} & =\frac{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\cdots}{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\cdots} \\
& =\frac{a_{0} z^{k}+a_{1} z^{k-1}+a_{2} z^{k-2}+\cdots}{b_{0} z^{k}+b_{1} z^{k-1}+b_{2} z^{k-2}+\cdots}
\end{aligned}
\end{aligned}
$$

Regions of Convergence

The Z transform $X(z)$ is a function of z defined for all z inside a Region of Convergence (ROC).

$$
x[n]=\left(\frac{7}{8}\right)^{n} u[n] \quad \leftrightarrow \quad X(z)=\frac{1}{1-\frac{7}{8} z^{-1}} ; \quad|z|>\frac{7}{8}
$$

ROC: $|z|>\frac{7}{8}$

Delay Property

If $x[n] \leftrightarrow X(z)$ for z in ROC then $x[n-1] \leftrightarrow z^{-1} X(z)$ for z in ROC.
We have already seen an example of this property.

$$
\begin{array}{rll}
\delta[n] & \leftrightarrow & 1 \\
\delta[n-1] & \leftrightarrow & z^{-1}
\end{array}
$$

More generally,

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Let $y[n]=x[n-1]$ then

$$
Y(z)=\sum_{n=-\infty}^{\infty} y[n] z^{-n}=\sum_{n=-\infty}^{\infty} x[n-1] z^{-n}
$$

Substitute $m=n-1$

$$
Y(z)=\sum_{m=-\infty}^{\infty} x[m] z^{-m-1}=z^{-1} X(z)
$$

Rational Polynomials

Applying the fundamental theorem of algebra and the factor theorem, we can express the polynomials as a product of factors.

$$
\begin{aligned}
H(z) & =\frac{a_{0} z^{k}+a_{1} z^{k-1}+a_{2} z^{k-2}+\cdots}{b_{0} z^{k}+b_{1} z^{k-1}+b_{2} z^{k-2}+\cdots} \\
& =\frac{\left(z-z_{0}\right)\left(z-z_{1}\right) \cdots\left(z-z_{k}\right)}{\left(z-p_{0}\right)\left(z-p_{1}\right) \cdots\left(z-p_{k}\right)}
\end{aligned}
$$

where the roots are called poles and zeros.

Rational Polynomials

Regions of convergence for Z transform are delimited by circles in the Z-plane. The edges of the circles are at the poles.

Example: $x[n]=\alpha^{n} u[n]$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} \alpha^{n} u[n] z^{-n}=\sum_{n=0}^{\infty} \alpha^{n} z^{-n} \\
& =\frac{1}{1-\alpha z^{-1}} ; \quad\left|\alpha z^{-1}\right|<1 \\
& =\frac{z}{z-\alpha} ; \quad|z|>|\alpha|
\end{aligned}
$$

Check Yourself

Find the inverse transform of

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}
$$

given that the ROC includes the unit circle.

Inverse Z transform

The inverse Z transform is defined by an integral that is not particularly easy to solve.

Formally,

$$
x[n]=\frac{1}{2 \pi j} \int_{C} X(z) z^{n-1} d z
$$

where C represents a closed contour that circles the origin by running in a counterclockwise direction through the region of convergence. This integral is not generally easy to compute.

This equation can be useful to prove theorems.
There are better ways (e.g., partial fractions) to compute inverse transforms for the kinds of systems that we frequently encounter.

Check Yourself

What DT signal has the following Z transform?

Solving Difference Equations with Z Transforms

Start with difference equation:

$$
y[n]-\frac{1}{2} y[n-1]=\delta[n]
$$

Take the Z transform of this equation:

$$
Y(z)-\frac{1}{2} z^{-1} Y(z)=1
$$

Solve for $Y(z)$:

$$
Y(z)=\frac{1}{1-\frac{1}{2} z^{-1}}
$$

Take the inverse Z transform (by recognizing the form of the transform):

$$
y[n]=\left(\frac{1}{2}\right)^{n} u[n]
$$

Properties of Z Transforms

The use of Z Transforms to solve differential equations depends on several important properties.

Property	$x[n]$	$X(z)$	ROC
Linearity	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}(z)+b X_{2}(z)$	$\supset\left(R_{1} \cap R_{2}\right)$
Delay	$x[n-1]$	$z^{-1} X(z)$	R
Multiply by n	$n x[n]$	$-z \frac{d X(z)}{d z}$	R
Convolve in n	$\sum_{m=-\infty}^{\infty} x_{1}[m] x_{2}[n-m]$	$X_{1}(z) X_{2}(z)$	$\supset\left(R_{1} \cap R_{2}\right)$

Check Yourself

Find the inverse transform of $Y(z)=\left(\frac{z}{z-1}\right)^{2} ; \quad|z|>1$.

Concept Map: Discrete-Time Systems
Relations among representations.

