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6.003: Signals and Systems

Laplace Transform

September 27, 2011

Mid-term Examination #1

Wednesday, October 5, 7:30-9:30pm, 26-310, 26-322, 26-328.

No recitations on the day of the exam.

Coverage: CT and DT Systems, Z and Laplace Transforms

Lectures 1–7

Recitations 1–7

Homeworks 1–4

Homework 4 will not collected or graded. Solutions will be posted.

Closed book: 1 page of notes (81
2 × 11 inches; front and back).

Designed as 1-hour exam; two hours to complete.

Review sessions during open office hours.

Conflict? Contact freeman@mit.edu before Friday, Sept. 30, 5pm.

Prior term midterm exams have been posted on the 6.003 website.

Concept Map for Discrete-Time Systems

Last time: relations among representations of DT systems.

Block Diagram System Functional

Difference Equation System Function

Unit-Sample Response

+

Delay

+

Delay

X Y Y

X
= H(R) = 1

1−R−R2

y[n] = x[n] + y[n−1] + y[n−2] H(z) = Y (z)
X(z) = z2

z2 − z − 1

h[n] : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .index shift

Delay → R

Concept Map for Discrete-Time Systems

Most important new concept from last time was the Z transform.

Block Diagram System Functional

Difference Equation System Function

Unit-Sample Response

+

Delay

+

Delay

X Y Y

X
= H(R) = 1

1−R−R2

y[n] = x[n] + y[n−1] + y[n−2] H(z) = Y (z)
X(z) = z2

z2 − z − 1

h[n] : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .index shift

Delay → R

Z transform

Concept Map for Continuous-Time Systems

Today: similar relations among representations of CT systems.

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s) = 2

2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

Delay → R

Concept Map for Continuous-Time Systems

Corresponding concept for CT is the Laplace Transform.

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s) = 2

2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

Delay → R

Laplace transform
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Laplace Transform: Definition

Laplace transform maps a function of time t to a function of s.

X(s) =
∫
x(t)e−stdt

There are two important variants:

Unilateral (18.03)

X(s) =
∫ ∞

0
x(t)e−stdt

Bilateral (6.003)

X(s) =
∫ ∞
−∞

x(t)e−stdt

Both share important properties.

We will focus on bilateral version, and discuss differences later.

Laplace Transforms

Example: Find the Laplace transform of x1(t):

0
t

x1(t)
1

x1(t) =
{
e−t if t ≥ 0
0 otherwise

X1(s) =
∫ ∞
−∞

x1(t)e−stdt =
∫ ∞

0
e−te−stdt = e−(s+1)t

−(s+ 1)

∣∣∣∣∣
∞

0
= 1
s+ 1

provided Re(s+ 1) > 0 which implies that Re(s) > −1.

−1

s-plane

ROC1
s+ 1 ; Re(s) > −1

Check Yourself

0
t

x2(t)

x2(t) =
{
e−t − e−2t if t ≥ 0
0 otherwise

Which of the following is the Laplace transform of x2(t)?

1. X2(s) = 1
(s+1)(s+2) ; Re(s) > −1

2. X2(s) = 1
(s+1)(s+2) ; Re(s) > −2

3. X2(s) = s
(s+1)(s+2) ; Re(s) > −1

4. X2(s) = s
(s+1)(s+2) ; Re(s) > −2

5. none of the above

Regions of Convergence

Left-sided signals have left-sided Laplace transforms (bilateral only).

Example:

t

x3(t)

−1
x3(t) =

{
−e−t if t ≤ 0
0 otherwise

X3(s) =
∫ ∞
−∞

x3(t)e−stdt =
∫ 0

−∞
−e−te−stdt = −e

−(s+1)t

−(s+ 1)

∣∣∣∣∣
0

−∞
= 1
s+ 1

provided Re(s+ 1) < 0 which implies that Re(s) < −1.

−1

s-plane

R
O

C

1
s+ 1 ; Re(s) < −1

Left- and Right-Sided ROCs

Laplace transforms of left- and right-sided exponentials have the

same form (except −); with left- and right-sided ROCs, respectively.

0
t

e−tu(t)
1

time function Laplace transform

−1

s-plane

ROC1
s+ 1

t

−e−tu(−t)

−1 −1

s-plane

R
O

C

1
s+ 1

Left- and Right-Sided ROCs

Laplace transforms of left- and right-sided exponentials have the

same form (except −); with left- and right-sided ROCs, respectively.

0
t

e−tu(t)
1

time function Laplace transform

−1

s-plane

ROC1
s+ 1

t

−e−tu(−t)

−1 −1

s-plane

R
O

C

1
s+ 1
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Check Yourself

Find the Laplace transform of x4(t).

0
t

x4(t)

x4(t) = e−|t|

1. X4(s) = 2
1−s2 ; −∞ < Re(s) <∞

2. X4(s) = 2
1−s2 ; −1 < Re(s) < 1

3. X4(s) = 2
1+s2 ; −∞ < Re(s) <∞

4. X4(s) = 2
1+s2 ; −1 < Re(s) < 1

5. none of the above

Time-Domain Interpretation of ROC

X(s) =
∫ ∞
−∞

x(t) e−stdt

t

x1(t)
s-plane

−1

t

x2(t)
s-plane

−1−2

t

x3(t)

−1

s-plane

−1

t

x4(t)
s-plane

−1 1

Time-Domain Interpretation of ROC

X(s) =
∫ ∞
−∞

x(t) e−stdt

t

x1(t)
s-plane

−1

t

x2(t)
s-plane

−1−2

t

x3(t)

−1

s-plane

−1

t

x4(t)
s-plane

−1 1

Time-Domain Interpretation of ROC

X(s) =
∫ ∞
−∞

x(t) e−stdt

t

x1(t)
s-plane

−1

t

x2(t)
s-plane

−1−2

t

x3(t)

−1

s-plane

−1

t

x4(t)
s-plane

−1 1

Time-Domain Interpretation of ROC

X(s) =
∫ ∞
−∞

x(t) e−stdt

t

x1(t)
s-plane

−1

t

x2(t)
s-plane

−1−2

t

x3(t)

−1

s-plane

−1

t

x4(t)
s-plane

−1 1

Check Yourself

The Laplace transform
2s

s2 − 4 corresponds to how many of

the following signals?

1. e−2tu(t) + e2tu(t)

2. e−2tu(t)− e2tu(−t)
3. −e−2tu(−t) + e2tu(t)

4. −e−2tu(−t)− e2tu(−t)
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Solving Differential Equations with Laplace Transforms

Solve the following differential equation:

ẏ(t) + y(t) = δ(t)

Take the Laplace transform of this equation.

L{ẏ(t) + y(t)} = L{δ(t)}

The Laplace transform of a sum is the sum of the Laplace transforms

(prove this as an exercise).

L{ẏ(t)}+ L{y(t)} = L{δ(t)}

What’s the Laplace transform of a derivative?

Laplace Transform of a Derivative

Assume that X(s) is the Laplace transform of x(t):

X(s) =
∫ ∞
−∞

x(t)e−stdt

Find the Laplace transform of y(t) = ẋ(t).

Y (s) =
∫ ∞
−∞

y(t)e−stdt =
∫ ∞
−∞

ẋ(t)︸︷︷︸
v̇

e−st︸︷︷︸
u

dt

= x(t)︸︷︷︸
v

e−st︸︷︷︸
u

∣∣∣∣∞
−∞
−
∫ ∞
−∞

x(t)︸︷︷︸
v

(−se−st︸ ︷︷ ︸
u̇

)dt

The first term must be zero since X(s) converged. Thus

Y (s) = s

∫ ∞
−∞

x(t)e−stdt = sX(s)

Solving Differential Equations with Laplace Transforms

Back to the previous problem:

L{ẏ(t)}+ L{y(t)} = L{δ(t)}

Let Y (s) represent the Laplace transform of y(t).

Then sY (s) is the Laplace transform of ẏ(t).

sY (s) + Y (s) = L{δ(t)}

What’s the Laplace transform of the impulse function?

Laplace Transform of the Impulse Function

Let x(t) = δ(t).

X(s) =
∫ ∞
−∞

δ(t)e−stdt

=
∫ ∞
−∞

δ(t) e−st
∣∣
t=0 dt

=
∫ ∞
−∞

δ(t) 1 dt

= 1

Sifting property:

Multiplying f(t) by δ(t) and integrating over t sifts out f(0).

Solving Differential Equations with Laplace Transforms

Back to the previous problem:

sY (s) + Y (s) = L{δ(t)} = 1

This is a simple algebraic expression. Solve for Y (s):

Y (s) = 1
s+ 1

We’ve seen this Laplace transform previously.

y(t) = e−tu(t) (why not y(t) = −e−tu(−t) ?)

Notice that we solved the differential equation ẏ(t)+y(t) = δ(t) without

computing homogeneous and particular solutions.

Solving Differential Equations with Laplace Transforms

Summary of method.

Start with differential equation:

ẏ(t) + y(t) = δ(t)

Take the Laplace transform of this equation:

sY (s) + Y (s) = 1

Solve for Y (s):

Y (s) = 1
s+ 1

Take inverse Laplace transform (by recognizing form of transform):

y(t) = e−tu(t)
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Solving Differential Equations with Laplace Transforms

Recognizing the form ...

Is there a more systematic way to take an inverse Laplace transform?

Yes ... and no.

Formally,

x(t) = 1
2πj

∫ σ+j∞

σ−j∞
X(s)estds

but this integral is not generally easy to compute.

This equation can be useful to prove theorems.

We will find better ways (e.g., partial fractions) to compute inverse

transforms for common systems.

Solving Differential Equations with Laplace Transforms

Example 2:

ÿ(t) + 3ẏ(t) + 2y(t) = δ(t)

Laplace transform:

s2Y (s) + 3sY (s) + 2Y (s) = 1

Solve:

Y (s) = 1
(s+ 1)(s+ 2) = 1

s+ 1 −
1

s+ 2
Inverse Laplace transform:

y(t) =
(
e−t − e−2t)u(t)

These forward and inverse Laplace transforms are easy if

• differential equation is linear with constant coefficients, and

• the input signal is an impulse function.

Properties of Laplace Transforms

Usefulness of Laplace transforms derives from its many properties.

Property x(t) X(s) ROC

Linearity ax1(t) + bx2(t) aX1(s) + bX2(s) ⊃ (R1 ∩R2)

Delay by T x(t− T ) X(s)e−sT R

Multiply by t tx(t) −dX(s)
ds

R

Multiply by e−αt x(t)e−αt X(s+ α) shift R by −α

Differentiate in t
dx(t)
dt

sX(s) ⊃ R

Integrate in t

∫ t

−∞
x(τ) dτ X(s)

s
⊃
(
R ∩

(
Re(s)>0

))
Convolve in t

∫ ∞
−∞

x1(τ)x2(t− τ) dτ X1(s)X2(s) ⊃ (R1 ∩R2)

and many others!

Initial Value Theorem

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order

singularities at t = 0 then

x(0+) = lim
s→∞

sX(s) .

Consider lim
s→∞

sX(s) = lim
s→∞

s

∫ ∞
−∞

x(t)e−stdt = lim
s→∞

∫ ∞
0

x(t) se−stdt.

As s→∞ the function e−st shrinks towards 0.

t

e−st

s = 1
s = 5

s = 25

Area under e−st is
1
s
→ area under se−st is 1 → lim

s→∞
se−st = δ(t) !

lim
s→∞

sX(s) = lim
s→∞

∫ ∞
0

x(t)se−stdt→
∫ ∞

0
x(t)δ(t)dt = x(0+)

(the 0+ arises because the limit is from the right side.)

Final Value Theorem

If x(t) = 0 for t < 0 and x(t) has a finite limit as t→∞
x(∞) = lim

s→0
sX(s) .

Consider lim
s→0

sX(s) = lim
s→0

s

∫ ∞
−∞

x(t)e−stdt = lim
s→0

∫ ∞
0

x(t) se−stdt.

As s → 0 the function e−st flattens out. But again, the area under

se−st is always 1.

x(∞)
t

e−st

s = 1
s = 5

s = 25

As s→ 0, area under se−st monotonically shifts to higher values of t

(e.g., the average value of se−st is 1
s which grows as s→ 0).

In the limit, lim
s→0

sX(s)→ x(∞) .

Summary: Relations among CT representations

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s) = 2

2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

Delay → R

Laplace transform

Many others: e.g., Laplace transform of a circuit (see HW4)!


