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6.003: Signals and Systems

Frequency Response

October 6, 2011

Review

Last time, we saw how a linear, time-invariant (LTI) system can be

characterized by its unit-sample/impulse response.

DT: y[n] = (x ∗ h)[n] =
∞∑

k=−∞
x[k]h[n− k]

CT: y(t) = (x ∗ h)(t) =
∫ ∞

−∞
x(τ)h(t− τ)dτ

Characterizing a system by its unit-sample/impulse response is es-

pecially insightful for some systems.

Microscope

Blurring can be represented by convolving the image with the optical

“point-spread-function” (3D impulse response).

target image

∗ =

Blurring is inversely related to the diameter of the lens.

Hubble Space Telescope
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optical + atmospheric
blurring

−2 −1 0 1 2 θ

optical blurring

[arc-sec]

Frequency Response

Today we will investigate a different way to characterize a system:

the frequency response.

Many systems are naturally described by their responses to sinusoids.

Example: audio systems

Check Yourself

How were frequencies modified in following music clips?

HF: high frequencies ↑: increased

LF: low frequencies ↓: decreased

clip 1 clip 2

1. HF↑ HF↓
2. LF↑ LF↓
3. HF↑ LF↓
4. LF↑ HF↓
5. none of the above
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Frequency Response Preview

If the input to a linear, time-invariant system is an eternal sinusoid,

then the output is also an eternal sinusoid:

• same frequency

• possibly different amplitude, and

• possibly different phase angle.

x(t) = cos(ωt)

t

y(t) = M cos(ωt+ φ)

t
LTI

system

The frequency response is a plot of the magnitude M and angle φ

as a function of frequency ω.

Demonstration

Measure the frequency response of a mass, spring, dashpot system.

x(t)

y(t)

Frequency Response

Calculate the frequency response.

Methods

• solve differential equation

→ find particular solution for x(t) = cosω0t

• find impulse response of system

→ convolve with x(t) = cosω0t

New method

• use eigenfunctions and eigenvalues

Eigenfunctions

If the output signal is a scalar multiple of the input signal, we refer to

the signal as an eigenfunction and the multiplier as the eigenvalue.

systemx(t) λx(t)

eigenvalue

eigenfunction

Check Yourself: Eigenfunctions

Consider the system described by
ẏ(t) + 2y(t) = x(t).

Determine if each of the following functions is an eigen-

function of this system. If it is, find its eigenvalue.

1. e−t for all time

2. et for all time

3. ejt for all time

4. cos(t) for all time

5. u(t) for all time

Complex Exponentials

Complex exponentials are eigenfunctions of LTI systems.

If x(t) = est and h(t) is the impulse response then

y(t) = (h ∗ x)(t) =
∫ ∞

−∞
h(τ)es(t−τ)dτ = est

∫ ∞

−∞
h(τ)e−sτdτ = H(s) est

est H(s) estLTI
h(t)

Eternal sinusoids are sums of complex exponentials.

cosω0t = 1
2

(
ejω0t + e−jω0t

)

Furthermore, the eigenvalue associated with est is H(s) !
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Rational System Functions

Eigenvalues are particularly easy to evaluate for systems represented

by linear differential equations with constant coefficients.

Then the system function is a ratio of polynomials in s.

Example:

ÿ(t) + 3ẏ(t) + 4y(t) = 2ẍ(t) + 7ẋ(t) + 8x(t)

Then

H(s) = 2s2 + 7s+ 8
s2 + 3s+ 4 ≡

N(s)
D(s)

Vector Diagrams

The value of H(s) at a point s = s0 can be determined graphically

using vectorial analysis.

Factor the numerator and denominator of the system function to

make poles and zeros explicit.

H(s0) = K
(s0 − z0)(s0 − z1)(s0 − z2) · · ·
(s0 − p0)(s0 − p1)(s0 − p2) · · ·

z0
z0

s0 − z0
s0

s-planes0

Each factor in the numerator/denominator corresponds to a vector

from a zero/pole (here z0) to s0, the point of interest in the s-plane.

Vector Diagrams

Example: Find the response of the system described by

H(s) = 1
s+ 2

to the input x(t) = e2jt (for all time).

−2

s0 − p0

s-plane

s0 = 2j

The denominator of H(s)|s=2j is 2j+ 2, a vector with length 2
√

2 and

angle π/4. Therefore, the response of the system is

y(t) = H(2j)e2jt = 1
2
√

2
e−

jπ
4 e2jt .

Vector Diagrams

The value of H(s) at a point s = s0 can be determined by combining

the contributions of the vectors associated with each of the poles

and zeros.

H(s0) = K
(s0 − z0)(s0 − z1)(s0 − z2) · · ·
(s0 − p0)(s0 − p1)(s0 − p2) · · ·

The magnitude is determined by the product of the magnitudes.

|H(s0)| = |K| |(s0 − z0)||(s0 − z1)||(s0 − z2)| · · ·
|(s0 − p0)||(s0 − p1)||(s0 − p2)| · · ·

The angle is determined by the sum of the angles.

∠H(s0) = ∠K+∠(s0−z0)+∠(s0−z1)+ · · ·−∠(s0−p0)−∠(s0−p1)−· · ·

Frequency Response

Response to eternal sinusoids.

Let x(t) = cosω0t (for all time). Then

x(t) = 1
2

(
ejω0t + e−jω0t

)

and the response to a sum is the sum of the responses.

y(t) = 1
2

(
H(jω0) ejω0t +H(−jω0) e−jω0t

)

Conjugate Symmetry

The complex conjugate of H(jω) is H(−jω).

The system function is the Laplace transform of the impulse re-

sponse:

H(s) =
∫ ∞

−∞
h(t)e−stdt

where h(t) is a real-valued function of t for physical systems.

H(jω) =
∫ ∞

−∞
h(t)e−jωtdt

H(−jω) =
∫ ∞

−∞
h(t)ejωtdt ≡

(
H(jω)

)∗



6.003: Signals and Systems Lecture 9 October 6, 2011

4

Frequency Response

Response to eternal sinusoids.

Let x(t) = cosω0t (for all time), which can be written as

x(t) = 1
2

(
ejω0t + e−jω0t

)

The response to a sum is the sum of the responses,

y(t) = 1
2

(
H(jω0)ejω0t +H(−jω0)e−jω0t

)

= Re
{
H(jω0)ejω0t

}

= Re
{
|H(jω0)|ej∠H(jω0)ejω0t

}

= |H(jω0)|Re
{
ejω0t+j∠H(jω0)

}

y(t) = |H(jω0)| cos (ω0t+ ∠H(jω0)) .

Frequency Response

The magnitude and phase of the response of a system to an eternal

cosine signal is the magnitude and phase of the system function

evaluated at s = jω.

H(s)cos(ωt) |H(jω)| cos
(
ωt+ ∠H(jω)

)

Vector Diagrams

s-plane

σ

ω
5

−5

5−5

H(s) = s− z1

−5 0 5

5
|H(jω)|

−5 5

π/2

−π/2

∠H(jω)

Vector Diagrams

s-plane

σ

ω
5

−5

5−5

H(s) = 9
s− p1

−5 0 5

5
|H(jω)|

−5 5

π/2

−π/2

∠H(jω)

Vector Diagrams

s-plane

σ

ω
5

−5

5−5

H(s) = 3 s− z1
s− p1

−5 0 5

5
|H(jω)|

−5 5

π/2

−π/2

∠H(jω)

Example: Mass, Spring, and Dashpot

x(t)

y(t)

F = Ma = Mÿ(t) = K(x(t)− y(t))−Bẏ(t)

Mÿ(t) +Bẏ(t) +Ky(t) = Kx(t)

(s2M + sB +K) Y (s) = KX(s)

H(s) = K

s2M + sB +K
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Vector Diagrams

s-plane

σ

ω
5

−5

5−5

H(s) = 15
(s− p1)(s− p2)

−5 0 5

5
|H(jω)|

−5 5

π

−π

∠H(jω)

Check Yourself

Consider the system represented by the following poles.

ω0

s-plane

−σ

ωd

−ωd

Find the frequency ω at which the magnitude of the re-

sponse y(t) is greatest if x(t) = cosωt.

1. ω = ωd 2. ωd < ω < ω0
3. 0 < ω < ωd 4. none of the above

Check Yourself

Consider the system represented by the following poles.

ω0

s-plane

−σ

ωd

−ωd

Find the frequency ω at which the phase of the response

y(t) is −π/2 if x(t) = cosωt.

0. 0 < ω < ωd 1. ω = ωd 2. ωd < ω < ω0
3. ω = ω0 4. ω > ω0 5. none

Frequency Response: Summary

LTI systems can be characterized by responses to eternal sinusoids.

Many systems are naturally described by their frequency response.

– audio systems

– mass, spring, dashpot system

Frequency response is easy to calculate from the system function.

Frequency response lives on the jω axis of the Laplace transform.


