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6.003: Signals and Systems

Feedback and Control

October 13, 2011

Feedback and Control

Feedback is pervasive in natural and artificial systems.
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Feedback and Control

Concentration of glucose in blood is highly regulated and remains

nearly constant despite episodic ingestion and use.
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Today’s goal

Use systems theory to gain insight into how to control a system.

Example: wallFinder System

Approach a wall, stopping a desired distance di in front of it.

di = desiredFront
do = distanceFront

t

do

K = −0.5 t

do

K = −1

t

do

K = −2 t

do

K = −8

What causes these different types of responses?

Structure of a Control Problem

(Simple) Control systems have three parts.

+
−

X Y
E

S

C

controller plant

sensor

The plant is the system to be controlled.

The sensor measures the output of the plant.

The controller specifies a command C to the plant based on the

difference between the input X and sensor output S.
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Analysis of wallFinder System

Cast wallFinder problem into control structure.

+
−

X Y
E

S

C

controller plant

sensor

di = desiredFront
do = distanceFront

proportional controller: v[n] = Ke[n] = K
(
di[n]− ds[n]

)

locomotion: do[n] = do[n− 1]− Tv[n− 1]

sensor with no delay: ds[n] = do[n]

Analysis of wallFinder System: Block Diagram

Visualize as block diagram.

di = desiredFront
do = distanceFront

proportional controller: v[n] = Ke[n] = K
(
di[n]− ds[n]

)

locomotion: do[n] = do[n− 1]− Tv[n− 1]

sensor with no delay: ds[n] = do[n]

+ K −T + RDi Do
−

V

Analysis of wallFinder System: System Function

Solve.

di = desiredFront
do = distanceFront

+ K −T + RDi Do
−

V

Do

Di
=

−KTR
1−R

1 + −KTR1−R

= −KTR
1−R−KTR = −KTR

1− (1 +KT )R

Analysis of wallFinder System: Poles

The system function contains a single pole at z = 1 +KT .
Do

Di
= −KTR

1− (1 +KT )R
Unit-sample response for KT = −0.2:

0
n

h[n]

0.2

Unit-step response s[n] for KT = −0.2:

1

0
n

What determines the speed of the response? Could it be faster?

Check Yourself

Find KT for fastest convergence of unit-sample response.

Do

Di
= −KTR

1− (1 +KT )R

1. KT = −2
2. KT = −1
3. KT = 0
4. KT = 1
5. KT = 2
0. none of the above

Analysis of wallFinder System

The optimum gain K moves robot to desired position in one step.

di = desiredFront=1 m

do = distanceFront=2 m

KT = −1
K = − 1

T
= − 1

1/10 = −10

v[n] = K
(
di[n]− do[n]

)
= −10

(
1− 2

)
= 10 m/s

exactly the right speed to get there in one step!
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Analyzing wallFinder: Space-Time Diagram

The optimum gain K moves robot to desired position in one step.

di = desiredFront
do = distanceFront

position

time

v = 10
v = 0
v = 0
v = 0
v = 0
v = 0
v = 0

Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.

di = desiredFront
do = distanceFront

proportional controller: v[n] = Ke[n] = K
(
di[n]− ds[n]

)

locomotion: do[n] = do[n− 1]− Tv[n− 1]

sensor with delay: ds[n] = do[n− 1]

Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.

di = desiredFront
do = distanceFront

position

time

v = 10
v = 0
v = −10
v = −10
v = 0

Analysis of wallFinder System: Block Diagram

Incorporating sensor delay in block diagram.

di = desiredFront
do = distanceFront

proportional controller: v[n] = Ke[n] = K
(
di[n]− ds[n]

)

locomotion: do[n] = do[n− 1]− Tv[n− 1]

sensor with delay: ds[n] = do[n− 1]

+ K −T + R

R

Di Do
−

V

Check Yourself

Find the system function H = Do

Di
.

+ K −T + R

R

Di Do
−

V

1.
KTR
1−R 2.

−KTR
1 +R−KTR2

3.
KTR
1−R −KTR 4.

−KTR
1−R−KTR2

5. none of the above

Analyzing wallFinder: Poles

Substitute R → 1
z

in the system functional to find the poles.

The poles are then the roots of the denominator.

z = 1
2 ±

√(
1
2

)2
+KT



6.003: Signals and Systems Lecture 10 October 13, 2011

4

Feedback and Control: Poles

If KT is small, the poles are at z ≈ −KT and z ≈ 1 +KT .

z = 1
2 ±

√(1
2
)2+KT ≈ 1

2 ±
√(1

2 +KT
)2 = 1 +KT, −KT

1 Re z

Im z
z-planeKT ≈ 0

Pole near 0 generates fast response.

Pole near 1 generates slow response.

Slow mode (pole near 1) dominates the response.

Feedback and Control: Poles

As KT becomes more negative, the poles move toward each other

and collide at z = 1
2 when KT = −1

4 .

z = 1
2 ±

√(1
2
)2 +KT = 1

2 ±
√(1

2
)2 − 1

4 = 1
2 ,

1
2

2
1 Re z

Im z
z-plane

KT = −1
4

Persistent responses decay. The system is stable.

Feedback and Control: Poles

If KT < −1/4, the poles are complex.

z = 1
2 ±

√(1
2
)2 +KT = 1

2 ± j
√
−KT −

(1
2
)2

1 Re z

Im z
z-planeKT = −1

Complex poles → oscillations.

Same oscillation we saw earlier!

Adding delay tends to destabilize control systems.

di = desiredFront
do = distanceFront

position

time

v = 10
v = 0
v = −10
v = −10
v = 0

Check Yourself

1 Re z

Im z
z-planeKT = −1

What is the period of the oscillation?

1. 1 2. 2 3. 3

4. 4 5. 6 0. none of above

Feedback and Control: Poles

The closed loop poles depend on the gain.

1 Re z

Im z
z-plane

If KT : 0→ −∞: then z1, z2 : 0, 1→ 1
2 ,

1
2 →

1
2 ± j∞
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Check Yourself

Find KT for fastest response.

1 Re z

Im z
z-plane

closed-loop poles

1
2 ±

√(
1
2

)2
+KT

1. 0 2. −1
4 3. −1

2
4. −1 5. −∞ 0. none of above

Destabilizing Effect of Delay

Adding delay in the feedback loop makes it more difficult to stabilize.

Ideal sensor: ds[n] = do[n]

More realistic sensor (with delay): ds[n] = do[n− 1]

1 Re z

Im z

1 Re z

Im z

Fastest response without delay: single pole at z = 0.

Fastest response with delay: double pole at z = 1
2 . much slower!

Destabilizing Effect of Delay

Adding more delay in the feedback loop is even worse.

More realistic sensor (with delay): ds[n] = do[n− 1]

Even more delay: ds[n] = do[n− 2]

1 Re z

Im z

2
1 Re z

Im z

Fastest response with delay: double pole at z = 1
2 .

Fastest response with more delay: double pole at z = 0.682.

→ even slower

Feedback and Control: Summary

Feedback is an elegant way to design a control system.

Stability of a feedback system is determined by its dominant pole.

Delays tend to decrease the stability of a feedback system.


