6.003: Signals and Systems

CT Feedback and Control

Mid-term Examination #2

Wednesday, October 26, 7:30-9:30pm, Walker (50-340)

No recitations on the day of the exam.

Coverage: Lectures 1–12

Recitations 1–12

Homeworks 1-7

Homework 7 will not be collected or graded. Solutions will be posted.

Closed book: 2 pages of notes $(8\frac{1}{2} \times 11 \text{ inches}; \text{ front and back}).$

No calculators, computers, cell phones, music players, or other aids.

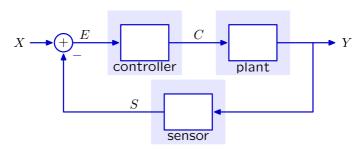
Designed as 1-hour exam; two hours to complete.

Review sessions during open office hours.

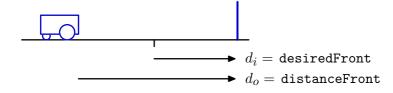
Conflict? Contact freeman@mit.edu before Friday, Oct. 21, 5pm.

Feedback and Control

Feedback: simple, elegant, and robust framework for control.



Last time: robotic driving.



Feedback and Control

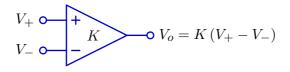
Using feedback to enhance performance.

Examples:

- increasing speed and bandwidth
- controlling position instead of speed
- reducing sensitivity to parameter variation
- reducing distortion
- stabilizing unstable systems
 - magnetic levitation
 - inverted pendulum

Op-amps

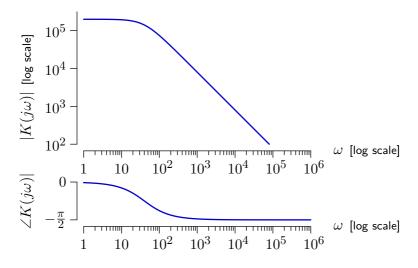
An "ideal" op-amp has many desireable characteristics.



- high speed
- large bandwidth
- high input impedance
- low output impedance
- ...

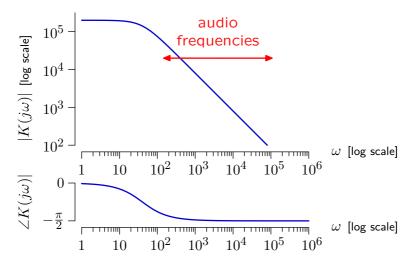
It is difficult to build a circuit with all of these features.

The gain of an op-amp depends on frequency.



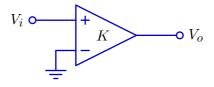
Frequency dependence of LM741 op-amp.

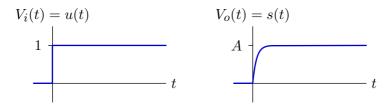
Low-gain at high frequencies limits applications.



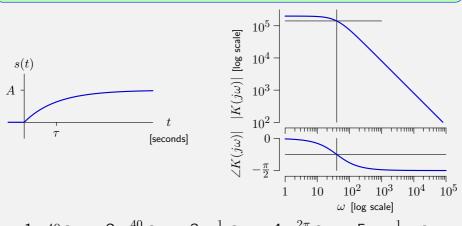
Unacceptable frequency response for an audio amplifier.

An ideal op-amp has fast time response.





Determine τ for the unit-step response s(t) of an LM741.



1.
$$40 \,\mathrm{s}$$
 2. $\frac{40}{2\pi} \,\mathrm{s}$ 3. $\frac{1}{40} \,\mathrm{s}$ 4. $\frac{2\pi}{40} \,\mathrm{s}$ 5. $\frac{1}{2\pi \times 40} \,\mathrm{s}$

0. none of the above

Determine the step response of an LM741.

System function:

$$K(s) = \frac{\alpha K_0}{s + \alpha}$$

Impulse response:

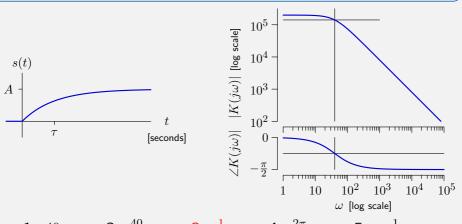
$$h(t) = \alpha K_0 e^{-\alpha t} u(t)$$

Step response:

$$s(t) = \int_{-\infty}^{t} h(\tau)d\tau = \int_{0}^{t} \alpha K_{0}e^{-\alpha\tau}d\tau = \frac{\alpha K_{0}e^{-\alpha\tau}}{-\alpha}\Big|_{0}^{t} = K_{0}(1 - e^{-\alpha t})u(t)$$

Parameters:

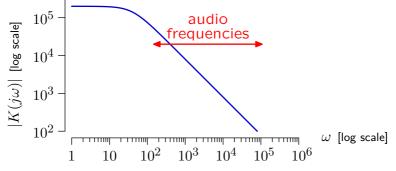
$$A = K_0 = 2 \times 10^5$$
$$\tau = \frac{1}{\alpha} = \frac{1}{40} \,\mathrm{s}$$



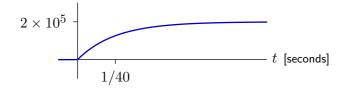
- 1. $40 \,\mathrm{s}$ 2. $\frac{40}{2\pi} \,\mathrm{s}$ 3. $\frac{1}{40} \,\mathrm{s}$ 4. $\frac{2\pi}{40} \,\mathrm{s}$ 5. $\frac{1}{2\pi \times 40} \,\mathrm{s}$
 - 0. none of the above

Performance parameters for real op-amps fall short of the ideal.

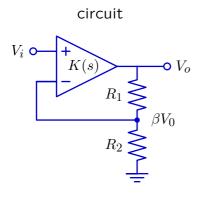
Frequency Response: high gain but only at low frequencies.



Step Response: slow by electronic standards.

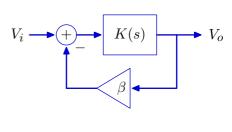


We can use feedback to improve performance of op-amps.



$$V_{-} = \beta V_o = \left(\frac{R_2}{R_1 + R_2}\right) V_o$$

6.003 model

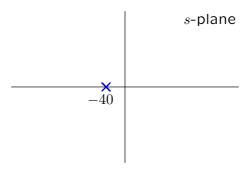


$$\frac{V_o}{V_i} = \frac{K(s)}{1 + \beta K(s)}$$

Dominant Pole

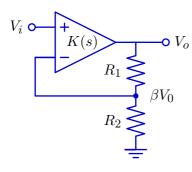
Op-amps are designed to have a dominant pole at low frequencies:

 \rightarrow simplifies the application of feedback.



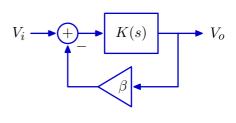
$$lpha = 40\,\mathrm{rad/s} = \frac{40\,\mathrm{rad/s}}{2\pi\,\mathrm{rad/cycle}} pprox 6.4\,\mathrm{Hz}$$

Using feedback to improve performance parameters.



$$V_{-} = \beta V_o = \left(\frac{R_2}{R_1 + R_2}\right) V_o$$

6.003 model

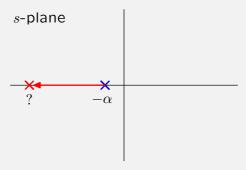


$$\frac{V_o}{V_i} = \frac{K(s)}{1 + \beta K(s)}$$

$$= \frac{\frac{\alpha K_0}{s + \alpha}}{1 + \beta \frac{\alpha K_0}{s + \alpha}}$$

$$= \frac{\alpha K_0}{s + \alpha + \alpha \beta A_0}$$

What is the most negative value of the closed-loop pole that can be achieved with feedback?



1.
$$-\alpha(1+\beta)$$

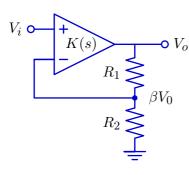
1.
$$-\alpha(1+\beta)$$
 2. $-\alpha(1+\beta K_0)$

3.
$$-\alpha(1+K_0)$$

$$4. -\infty$$

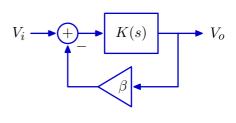
5. none of the above

Using feedback to improve performance parameters.



$$V_{-} = \beta V_o = \left(\frac{R_2}{R_1 + R_2}\right) V_o$$

6.003 model



$$\frac{V_o}{V_i} = \frac{K(s)}{1 + \beta K(s)}$$
$$= \frac{\frac{\alpha K_0}{s + \alpha}}{1 + \beta \frac{\alpha K_0}{s + \alpha}}$$
$$= \frac{\alpha K_0}{s + \alpha + \alpha \beta}$$

What is the most negative value of the closed-loop pole that can be achieved with feedback?

Open loop system function:
$$\frac{\alpha K_0}{s+\alpha}$$

$$\rightarrow$$
 pole: $s = -\alpha$.

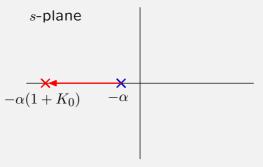
Closed-loop system function:
$$\frac{\alpha K_0}{s + \alpha + \alpha \beta K_0}$$

$$\rightarrow$$
 pole: $s = -\alpha(1 + \beta K_0)$.

The feedback constant is $0 \le \beta \le 1$.

ightarrow most negative value of the closed-loop pole is $s=-lpha(1+K_0).$

What is the most negative value of the closed-loop pole that can be achieved with feedback? 3



1.
$$-\alpha(1+\beta)$$

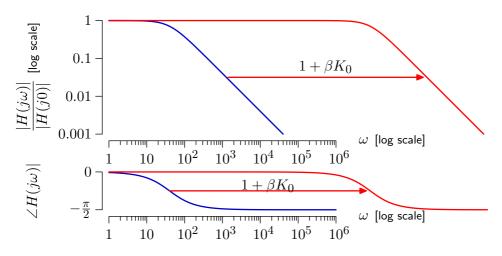
2.
$$-\alpha(1+\beta K_0)$$

3.
$$-\alpha(1+K_0)$$

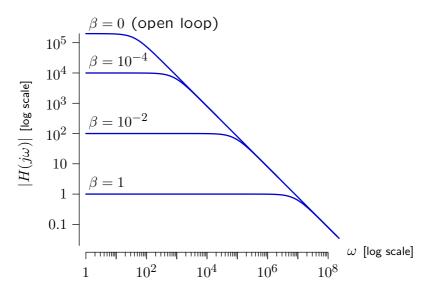
4.
$$-\infty$$

5. none of the above

Feedback extends frequency response by a factor of $1 + \beta K_0$ $(K_0 = 2 \times 10^5)$.

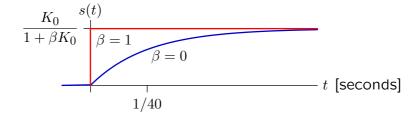


Feedback produces higher bandwidths by **reducing** the gain at low frequencies. It trades gain for bandwidth.



Feedback makes the time response faster by a factor of $1 + \beta K_0$ ($K_0 = 2 \times 10^5$).

$$s(t) = \frac{K_0}{1 + \beta K_0} (1 - e^{-\alpha(1 + \beta K_0)t}) u(t)$$



Feedback produces faster responses by **reducing** the final value of the step response. It trades gain for speed.

Step response

$$s(t) = \frac{K_0}{1 + \beta K_0} (1 - e^{-\alpha(1 + \beta K_0)t}) u(t)$$

$$2 \times 10^5 - 0$$

$$0.5 \times 10^{-5}$$

$$1.5 \times 10^{-5}$$

$$t \text{ [seconds]}$$

The maximum rate of voltage change $\frac{ds(t)}{dt}$ is not increased.

Feedback improves performance parameters of op-amp circuits.

- can extend frequency response
- can increase speed

Performance enhancements are achieved through a reduction of gain.

We wish to build a robot arm (actually its elbow). The input should be voltage v(t), and the output should be the elbow angle $\theta(t)$.

$$v(t)$$
 robotic arm $\theta(t) \propto v(t)$

We wish to build the robot arm with a DC motor.

This problem is similar to the head-turning servo in 6.01!

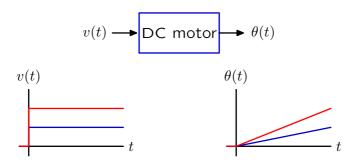
What is the relation between v(t) and $\theta(t)$ for a DC motor?

$$v(t) \longrightarrow \text{DC motor} \longrightarrow \theta(t)$$

- 1. $\theta(t) \propto v(t)$
- 2. $\cos \theta(t) \propto v(t)$
- 3. $\theta(t) \propto \dot{v}(t)$
- 4. $\cos \theta(t) \propto \dot{v}(t)$
- 5. none of the above

What is the relation between v(t) and $\theta(t)$ for a DC motor?

To first order, the rotational speed $\dot{\theta}(t)$ of a DC motor is proportional to the input voltage v(t).



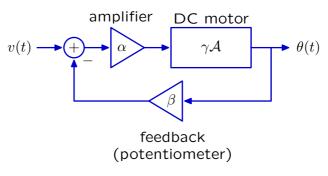
First-order model: integrator

What is the relation between v(t) and $\theta(t)$ for a DC motor?

$$v(t) \longrightarrow \text{DC motor} \rightarrow \theta(t)$$

- 1. $\theta(t) \propto v(t)$
- 2. $\cos \theta(t) \propto v(t)$
- 3. $\theta(t) \propto \dot{v}(t)$
- 4. $\cos \theta(t) \propto \dot{v}(t)$
- 5. none of the above

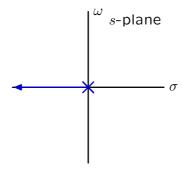
Use proportional feedback to control the angle of the motor's shaft.



$$\frac{\Theta}{V} = \frac{\alpha \gamma \mathcal{A}}{1 + \alpha \beta \gamma \mathcal{A}} = \frac{\alpha \gamma \frac{1}{s}}{1 + \alpha \beta \gamma \frac{1}{s}} = \frac{\alpha \gamma}{s + \alpha \beta \gamma}$$

The closed loop system has a single pole at $s = -\alpha\beta\gamma$.

$$\frac{\Theta}{V} = \frac{\alpha \gamma}{s + \alpha \beta \gamma}$$



As α increases, the closed-loop pole becomes increasingly negative.

Find the impulse and step response.

The system function is

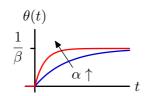
$$\frac{\Theta}{V} = \frac{\alpha \gamma}{s + \alpha \beta \gamma} \,.$$

The impulse response is

$$h(t) = \alpha \gamma e^{-\alpha \beta \gamma t} u(t)$$

and the step response is therefore

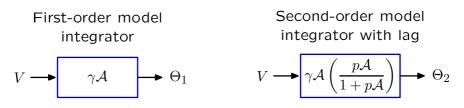
$$s(t) = \frac{1}{\beta} \left(1 - e^{-\alpha \beta \gamma t} \right) u(t).$$



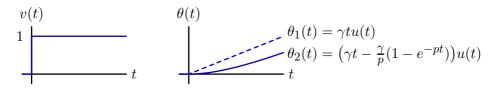
The response is faster for larger values of α .

Try it: Demo.

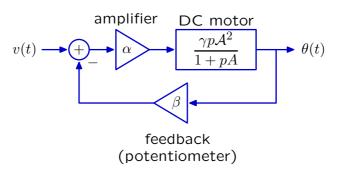
The speed of a DC motor does not change instantly if the voltage is stepped. There is lag due to rotational inertia.



Step response of the models:

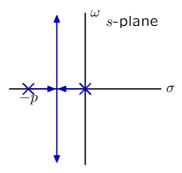


Analyze second-order model.

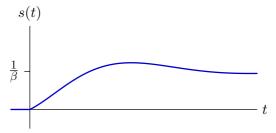


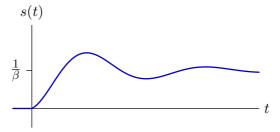
$$\frac{\Theta}{V} = \frac{\frac{\alpha\gamma p\mathcal{A}^2}{1+pA}}{1 + \frac{\alpha\beta\gamma p\mathcal{A}^2}{1+pA}} = \frac{\alpha\gamma p\mathcal{A}^2}{1 + pA + \alpha\beta\gamma p\mathcal{A}^2} = \frac{\alpha\gamma p}{s^2 + ps + \alpha\beta\gamma p}$$
$$s = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - \alpha\beta\gamma p}$$

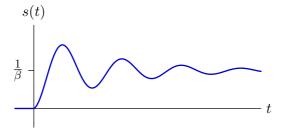
For second-order model, increasing α causes the poles at 0 and -p to approach each other, collide at s=-p/2, then split into two poles with imaginary parts.

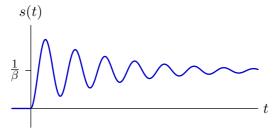


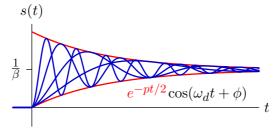
Increasing the gain α does not increase speed of convergence.











Feedback and Control: Summary

CT feedback is useful for many reasons. Today we saw two:

- increasing speed and bandwidth
- controlling position instead of speed

Next time we will look at several others:

- reduce sensitivity to parameter variation
- reduce distortion
- stabilize unstable systems
 - magnetic levitation
 - inverted pendulum