
6.003: Signals and Systems

CT Feedback and Control

October 25, 2011



Mid-term Examination #2

Tomorrow, October 26, 7:30-9:30pm, Walker (50-340)

No recitations on the day of the exam.

Coverage: Lectures 1–12

Recitations 1–12

Homeworks 1–7

Homework 7 will not be collected or graded. Solutions are posted.

Closed book: 2 pages of notes (81
2 × 11 inches; front and back).

No calculators, computers, cell phones, music players, or other aids.

Designed as 1-hour exam; two hours to complete.

Old exams and solutions are posted on the 6.003 website.



Feedback and Control

Using feedback to enhance performance.

Examples:

• improve performance of an op amp circuit.

• control position of a motor.

• reduce sensitivity to unwanted parameter variation.

• reduce distortions.

• stabilize unstable systems

− magnetic levitation

− inverted pendulum



Feedback and Control

Reducing sensitivity to unwanted parameter variation.

Example: power amplifier

F0MP3 player

power
amplifier

8 < F0 < 12
speaker

Changes in F0 (due to changes in temperature, for example) lead to

undesired changes in sound level.



Feedback and Control

Feedback can be used to compensate for parameter variation.

F0MP3 player K

β

+

power
amplifier

8 < F0 < 12 speaker

X Y

−

H(s) = KF0
1 + βKF0

If K is made large, so that βKF0 � 1, then

H(s) ≈ 1
β

independent of K or F0!



Feedback and Control

Feedback reduces the change in gain due to change in F0.
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Check Yourself

F0MP3 player K

β

+

power
amplifier

8 < F0 < 12 speaker

X Y

−

Feedback greatly reduces sensitivity to variations in K or F0.

lim
K→∞

H(s) = KF0
1 + βKF0

→ 1
β

What about variations in β? Aren’t those important?



Check Yourself

What about variations in β? Aren’t those important?

The value of β is typically determined with resistors, whose values

are quite stable (compared to semiconductor devices).



Crossover Distortion

Feedback can compensate for parameter variation even when the

variation occurs rapidly.

Example: using transistors to amplify power.

MP3 player

speaker

+50V

−50V



Crossover Distortion

This circuit introduces “crossover distortion.”

For the upper transistor to conduct, Vi − Vo > VT .

For the lower transistor to conduct, Vi − Vo < −VT .

+50V

−50V

Vi Vo Vi

Vo

VT

−VT



Crossover Distortion

Crossover distortion changes the shapes of signals.

Example: crossover distortion when the input is Vi(t) = B sin(ω0t).

+50V

−50V

Vi Vo t

Vo(t)



Crossover Distortion

Feedback can reduce the effects of crossover distortion.

MP3 player K+

speaker

+50V

−50V

−



Crossover Distortion

When K is small, feedback has little effect on crossover distortion.

K+

+50V

−50V

Vi Vo
− t

Vo(t)
K = 1



Crossover Distortion

Feedback reduces crossover distortion.

K+

+50V

−50V

Vi Vo
− t

Vo(t)
K = 2



Crossover Distortion

Feedback reduces crossover distortion.

K+

+50V

−50V

Vi Vo
− t

Vo(t)
K = 4



Crossover Distortion

Feedback reduces crossover distortion.

K+

+50V

−50V

Vi Vo
− t

Vo(t)
K = 10



Crossover Distortion

K+

+50V

−50V

Vi Vo
−

t

Vo(t)

Demo

• original

• no feedback

• K = 2
• K = 4
• K = 8
• K = 16
• original

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Feedback and Control

Using feedback to enhance performance.

Examples:

• improve performance of an op amp circuit.

• control position of a motor.

• reduce sensitivity to unwanted parameter variation.

• reduce distortions.

• stabilize unstable systems

− magnetic levitation

− inverted pendulum



Control of Unstable Systems

Feedback is useful for controlling unstable systems.

Example: Magnetic levitation.

i(t) = io

y(t)



Control of Unstable Systems

Magnetic levitation is unstable.

i(t) = io

y(t)

fm(t)

Mg

Equilibrium (y = 0): magnetic force fm(t) is equal to the weight Mg.

Increase y → increased force → further increases y.

Decrease y → decreased force → further decreases y.

Positive feedback!



Modeling Magnetic Levitation

The magnet generates a force that depends on the distance y(t).

i(t) = io

y(t)

fm(t)

Mg
fm(t)

y(t)

Mg

i(t) = i0



Modeling Magnetic Levitation

The net force f(t) = fm(t)−Mg accelerates the mass.

i(t) = io

y(t)

fm(t)

Mg
f(t) = fm(t)−Mg = Ma = Mÿ(t)

y(t)

i(t) = i0



Modeling Magnetic Levitation

Represent the magnet as a system: input y(t) and output f(t).

i(t) = io

y(t)

fm(t)

Mg
f(t) = fm(t)−Mg = Ma = Mÿ(t)

y(t)

i(t) = i0

magnety(t) f(t)



Modeling Magnetic Levitation

The magnet system is part of a feedback system.

f(t) = fm(t)−Mg = Ma = Mÿ(t)

y(t)

i(t) = i0

magnety(t) f(t)

magnet 1
M A A y(t)y(t)

ÿ(t)f(t)



Modeling Magnetic Levitation

For small distances, force grows approximately linearly with distance.

f(t) = fm(t)−Mg = Ma = Mÿ(t)

y(t)

i(t) = i0

K
Ky(t) f(t)

K 1
M A A y(t)y(t)

ÿ(t)f(t)



“Levitation” with a Spring

Relation between force and distance for a spring is opposite in sign.

F = K
(
x(t)− y(t)

)
= Mÿ(t)

x(t)

y(t)

f(t)

y(t)

Mg

−K



Block Diagrams

Block diagrams for magnetic levitation and spring/mass are similar.

Spring and mass

F = K
(
x(t)− y(t)

)
= Mÿ(t)

+ K

M
A Ax(t) y(t)

ẏ(t)ÿ(t)
−

Magnetic levitation

F = Ky(t) = Mÿ(t)

+ K

M
A Ax(t) = 0 y(t)

ẏ(t)ÿ(t)
+



Check Yourself

How do the poles of these two systems differ?

Spring and mass

F = K
(
x(t)− y(t)

)
= Mÿ(t)

+ K

M
A Ax(t) y(t)

ẏ(t)ÿ(t)
−

Magnetic levitation

F = Ky(t) = Mÿ(t)

+ K

M
A Ax(t) = 0 y(t)

ẏ(t)ÿ(t)
+



Check Yourself

How do the poles of the two systems differ?

s-plane

Spring and mass

F = K
(
x(t)− y(t)

)
= Mÿ(t)

Y

X
=

K
M

s2 + K
M

→ s = ±j
√
K

M

s-plane

Magnetic levitation

F = Ky(t) = Mÿ(t)

s2 = K

M
→ s = ±

√
K

M



Magnetic Levitation is Unstable

i(t) = io

y(t)

fm(t)

Mg

magnet 1
M A A y(t)y(t)

ÿ(t)f(t)



Magnetic Levitation

We can stabilize this system by adding an additional feedback loop

to control i(t).

f(t)

y(t)

Mg

i(t) = 1.1i0

i(t) = i0

i(t) = 0.9i0



Stabilizing Magnetic Levitation

Stabilize magnetic levitation by controlling the magnet current.

i(t) = io

y(t)

fm(t)

Mg

magnet 1
M A A

α

y(t)y(t)
ÿ(t)f(t)

i(t)



Stabilizing Magnetic Levitation

Stabilize magnetic levitation by controlling the magnet current.

i(t) = io

y(t)

fm(t)

Mg

+ 1
M A A y(t)

fi(t)

fo(t)

−K2

K



Magnetic Levitation

Increasing K2 moves poles toward the origin and then onto jω axis.

+ K−K2
M A Ax(t) y(t)

ẏ(t)ÿ(t)

s-plane

But the poles are still marginally stable.



Magnetic Levitation

Adding a zero makes the poles stable for sufficiently large K2.

+ K−K2
M (s+ z0) A Ax(t) y(t)

ẏ(t)ÿ(t)

s-plane

Try it: Demo [designed by Prof. James Roberge].



Inverted Pendulum

As a final example of stabilizing an unstable system, consider an

inverted pendulum.

x(t)

θ(t)
mg

l

m
d2x(t)
dt2

θ(t)
mg

l

lab frame

(inertial)

cart frame

(non-inertial)

ml2︸︷︷︸
I

d2θ(t)
dt2

= mg︸︷︷︸
force

l sin θ(t)︸ ︷︷ ︸
distance

−md2x(t)
dt2︸ ︷︷ ︸

force

l cos θ(t)︸ ︷︷ ︸
distance



Check Yourself: Inverted Pendulum

Where are the poles of this system?

x(t)

θ(t)
mg

l

m
d2x(t)
dt2

θ(t)
mg

l

ml2
d2θ(t)
dt2

= mgl sin θ(t)−md2x(t)
dt2

l cos θ(t)



Check Yourself: Inverted Pendulum

Where are the poles of this system?

x(t)

θ(t)
mg

l

m
d2x(t)
dt2

θ(t)
mg

l

ml2
d2θ(t)
dt2

= mgl sin θ(t)−md2x(t)
dt2

l cos θ(t)

ml2
d2θ(t)
dt2

−mglθ(t) = −mld
2x(t)
dt2

H(s) = Θ
X

= −mls2

ml2s2 −mgl
= −s2/l
s2 − g/l

poles at s = ±
√
g

l



Inverted Pendulum

This unstable system can be stablized with feedback.

x(t)

θ(t)
mg

l

m
d2x(t)
dt2

θ(t)
mg

l

Try it. Demo. [originally designed by Marcel Gaudreau]



Feedback and Control

Using feedback to enhance performance.

Examples:

• improve performance of an op amp circuit.

• control position of a motor.

• reduce sensitivity to unwanted parameter variation.

• reduce distortions.

• stabilize unstable systems

− magnetic levitation

− inverted pendulum


