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Last Time: Describing Signals by Frequency Content

Harmonic content is natural way to describe some kinds of signals.

Ex: musical instruments (http://theremin.music.uiowa.edu/MIS)
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Last Time: Fourier Series

Determining harmonic components of a periodic signal.

ak= 1
T

∫
T
x(t)e−j

2π
T ktdt (“analysis” equation)

x(t)= x(t+ T ) =
∞∑

k=−∞
ake

j 2π
T kt (“synthesis” equation)
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We can think of Fourier series as an orthogonal decomposition.



Orthogonal Decompositions

Vector representation of 3-space: let r̄ represent a vector with

components {x, y, and z} in the {x̂, ŷ, and ẑ} directions, respectively.

x = r̄ · x̂
y = r̄ · ŷ
z = r̄ · ẑ

(“analysis” equations)

r̄ = xx̂+ yŷ + zẑ (“synthesis” equation)
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Orthogonal Decompositions

Integrating over a period sifts out the kth component of the series.

Sifting as a dot product:

x = r̄ · x̂ ≡ |r̄||x̂| cos θ

Sifting as an inner product:

ak = e j
2π
T kt · x(t) ≡ 1

T

∫
T
x(t)e−j

2π
T ktdt

where

a(t) · b(t) = 1
T

∫
T
a∗(t)b(t)dt .



Orthogonal Decompositions

Integrating over a period sifts out the kth component of the series.

Sifting as a dot product:

x = r̄ · x̂ ≡ |r̄||x̂| cos θ
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where

a(t) · b(t) = 1
T

∫
T
a∗(t)b(t)dt .

The complex conjugate (∗) makes the inner product of the kth and

mth components equal to 1 iff k = m:
1
T

∫
T

(
e j
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T kt

)∗(
e j
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T mt

)
dt = 1
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∫
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{
1 if k = m

0 otherwise



Check Yourself

How many of the following pairs of functions are

orthogonal (⊥) in T = 3?

1. cos 2πt ⊥ sin 2πt ?

2. cos 2πt ⊥ cos 4πt ?

3. cos 2πt ⊥ sin πt ?

4. cos 2πt ⊥ e j2πt ?
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cos 2πt ⊥ sin 2πt ?
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cos 2πt ⊥ cos 4πt ?

1 2 3
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cos 2πt cos 4πt = 1
2 cos 6πt+ 1

2 cos 2πt

∫ 3

0
dt = 0 therefore YES
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Check Yourself

How many of the following are orthogonal (⊥) in T = 3?

cos 2πt ⊥ sin πt ?

1 2 3
t

cos 2πt

1 2 3
t

sin πt

1 2 3
t

cos 2πt sin πt = 1
2 sin 3πt− 1

2 sin πt

∫ 3

0
dt 6= 0 therefore NO



Check Yourself

How many of the following are orthogonal (⊥) in T = 3?

cos 2πt ⊥ e2πt ?



Check Yourself

How many of the following are orthogonal (⊥) in T = 3?

cos 2πt ⊥ e2πt ?

e2πt = cos 2πt+ j sin 2πt

cos 2πt ⊥ sin 2πt but not cos 2πt

Therefore NO



Check Yourself

How many of the following pairs of functions

are orthogonal (⊥) in T = 3? 2

1. cos 2πt ⊥ sin 2πt ?
√

2. cos 2πt ⊥ cos 4πt ?
√

3. cos 2πt ⊥ sin πt ? X

4. cos 2πt ⊥ e j2πt ? X



Speech

Vowel sounds are quasi-periodic.
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Speech

Harmonic content is natural way to describe vowel sounds.

bat

k

bait

k

bet

k

beet

k

bit

k

bite

k

bought

k

boat

k

but

k

boot

k



Speech

Harmonic content is natural way to describe vowel sounds.

bat

t

bat

k

beet

t

beet

k

boot

t

boot

k



Speech Production

Speech is generated by the passage of air from the lungs, through

the vocal cords, mouth, and nasal cavity.

Adapted from T.F. Weiss
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Speech Production

Controlled by complicated muscles, vocal cords are set in vibration

by the passage of air from the lungs.

Looking down the throat:

Gray's Anatomy Adapted from T.F. Weiss

Glottis

Vocal
cords

Vocal cords open

Vocal cords closed



Speech Production

Vibrations of the vocal cords are “filtered” by the mouth and nasal

cavities to generate speech.



Filtering

Notion of a filter.

LTI systems

• cannot create new frequencies.

• can only scale magnitudes & shift phases of existing components.

Example: Low-Pass Filtering with an RC circuit
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Lowpass Filter

Calculate the frequency response of an RC circuit.

+
−

vi

+

vo

−

R

C

KVL: vi(t) = Ri(t) + vo(t)
C: i(t) = Cv̇o(t)
Solving: vi(t) = RCv̇o(t) + vo(t)

Vi(s) = (1 + sRC)Vo(s)

H(s) = Vo(s)
Vi(s)

= 1
1 + sRC
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Lowpass Filtering

Let the input be a square wave.
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Lowpass Filtering

Low frequency square wave: ω0 << 1/RC.
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Lowpass Filtering

Higher frequency square wave: ω0 < 1/RC.
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Lowpass Filtering

Still higher frequency square wave: ω0 = 1/RC.
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Lowpass Filtering

High frequency square wave: ω0 > 1/RC.
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Source-Filter Model of Speech Production

Vibrations of the vocal cords are “filtered” by the mouth and nasal

cavities to generate speech.

buzz from
vocal cords

speech
throat and

nasal cavities



Speech Production

X-ray movie showing speech in production.



Demonstration

Artificial speech.

buzz from
vocal cords
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Formants

Resonant frequencies of the vocal tract.

frequency

a
m

p
li
tu

d
e

F1
F2

F3

Formant heed head had hod haw’d who’d
Men F1 270 530 660 730 570 300

F2 2290 1840 1720 1090 840 870
F3 3010 2480 2410 2440 2410 2240

Women F1 310 610 860 850 590 370
F2 2790 2330 2050 1220 920 950
F3 3310 2990 2850 2810 2710 2670

Children F1 370 690 1010 1030 680 430
F2 3200 2610 2320 1370 1060 1170
F3 3730 3570 3320 3170 3180 3260

http://www.sfu.ca/sonic-studio/handbook/Formant.html



Speech Production

Same glottis signal + different formants → different vowels.

glottis signal vocal tract filter vowel sound

ak

ak

bk

bk

We detect changes in the filter function to recognize vowels.



Singing

We detect changes in the filter function to recognize vowels

... at least sometimes.

Demonstration.

“la” scale.

“lore” scale.

“loo” scale.

“ler” scale.

“lee” scale.

Low Frequency: “la” “lore” “loo” “ler” “lee”.

High Frequency: “la” “lore” “loo” “ler” “lee”.

http://www.phys.unsw.edu.au/jw/soprane.html



Speech Production

We detect changes in the filter function to recognize vowels.
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Continuous-Time Fourier Series: Summary

Fourier series represent signals by their frequency content.

Representing a signal by its frequency content is useful for many

signals, e.g., music.

Fourier series motivate a new representation of a system as a filter.

Representing a system as a filter is useful for many systems, e.g.,

speech synthesis.


