

Lecture 16

Relation between Fourier and Laplace Transforms

If the Laplace transform of a signal exists and if the ROC includes the $j\omega$ axis, then the Fourier transform is equal to the Laplace transform evaluated on the $j\omega$ axis.

Laplace transform:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

Fourier transform:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = X(s)|_{s=j\omega}$$

Relation between Fourier and Laplace Transforms

Fourier transform "inherits" properties of Laplace transform.

Property	x(t)	X(s)	$X(j\omega)$
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	$aX_1(j\omega) + bX_2(j\omega)$
Time shift	$x(t-t_0)$	$e^{-st_0}X(s)$	$e^{-j\omega t_0}X(j\omega)$
Time scale	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Differentiation	$\frac{dx(t)}{dt}$	sX(s)	$j\omega X(j\omega)$
Multiply by t	tx(t)	$-\frac{d}{ds}X(s)$	$-\frac{1}{j}\frac{d}{d\omega}X(j\omega)$
Convolution	$x_1(t) * x_2(t)$	$X_1(s) \times X_2(s)$	$X_1(j\omega) \times X_2(j\omega)$

6.003: Signals and Systems

Lecture 16

Check Yourself

Stretching time compresses frequency.

Find a general scaling rule.

Let $x_2(t) = x_1(at)$.

If time is stretched in going from x_1 to x_2 , is a > 1 or a < 1?

Lecture 16

Fourier Transforms

Find a general scaling rule.

Let
$$x_2(t) = x_1(at)$$
.
 $X_2(j\omega) = \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} x_1(at)e^{-j\omega t}dt$

Let
$$\tau = at \ (a > 0)$$
.
 $X_2(j\omega) = \int_{-\infty}^{\infty} x_1(\tau) e^{-j\omega\tau/a} \ \frac{1}{a} d\tau = \frac{1}{a} X_1\left(\frac{j\omega}{a}\right)$

If a < 0 the sign of $d\tau$ would change along with the limits of integration. In general,

$$x_1(at) \leftrightarrow \frac{1}{|a|} X_1\left(\frac{j\omega}{a}\right)$$
.

If time is stretched (a < 1) then frequency is compressed and amplitude increases (preserving area).

Moments

The value of x(0) is the integral of $X(j\omega)$ divided by 2π .

Fourier Transform

One of the most useful features of the Fourier transform (and Fourier series) is the simple "inverse" Fourier transform.

$$\begin{split} X(j\omega) &= \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \\ x(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \end{split}$$

(Fourier transform)

("inverse" Fourier transform)

This result is not so easily obtained without inverse relation.

6.003: Signals and Systems

Lecture 16

Fourier Transform

The Fourier transform and its inverse have very similar forms.

 $X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \qquad \text{(Fourier transform)}$

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$ ("inverse" Fourier transform)

Convert one to the other by

- $\bullet \quad t \to \omega$
- $\omega \to -t$
- scale by 2π

Duality

The Fourier transform and its inverse have very similar forms.

$$\begin{split} X(j\omega) &= \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \\ x(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \end{split}$$

Two differences:

- minus sign: flips time axis (or equivalently, frequency axis)
- divide by 2π (or multiply in the other direction)

Eternal Sinusoids		
Using duality to find the Fourier transform of an eternal sinusoid.		
$\delta(t-T) \leftrightarrow e^{-j\omega T}$		
$\omega ightarrow t ightarrow \omega$; flip ; $ imes 2\pi$		
$e^{-jtT} \leftrightarrow 2\pi\delta(\omega+T)$		
$T \to \omega_0: \\ e^{-j\omega_0 t} \leftrightarrow 2\pi\delta(\omega+\omega_0)$		
$x(t) = x(t+T) = \sum_{k=0}^{\infty} a_{k} e^{j\frac{2\pi}{T}kt} CTFS \qquad \{a_{k}\}$		
$k = -\infty$ $(0, k)$		
$x(t) = x(t+T) = \sum_{k=0}^{\infty} a_{k}e^{j\frac{2\pi}{T}kt} CTFT \sum_{k=0}^{\infty} 2\pi a_{k}\delta\left(\omega - \frac{2\pi}{T}k\right)$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

6.003: Signals and Systems

Lecture 16

Summary

Fourier transform generalizes ideas from Fourier series to aperiodic signals.

Fourier transform is strikingly similar to Laplace transform

- similar properties (linearity, differentiation, ...)
- but has a simple inverse (great for computation!)

Next time – applications (demos) of Fourier transforms

Mid-Semester Survey

Tell us what you think (while we can still do something about it!)

Comment on

- homework
- open office hours
- recitations
- lectures
- exams

What did you like most about 6.003?

What would you change about 6.003?

Other comments?