
6.003: Signals and Systems

Discrete-Time Frequency Representations

November 8, 2011



Mid-term Examination #3

Wednesday, November 16, 7:30-9:30pm, Walker (50-340)

No recitations on the day of the exam.

Coverage: Lectures 1–18

Recitations 1–16

Homeworks 1–10

Homework 10 will not be collected or graded.

Solutions will be posted.

Closed book: 3 pages of notes (81
2 × 11 inches; front and back).

No calculators, computers, cell phones, music players, or other aids.

Designed as 1-hour exam; two hours to complete.

Review session Monday at 3pm (36-112) and at open office hours.

Prior term midterm exams have been posted on the 6.003 website.

Conflict? Contact freeman@mit.edu before Friday, Nov. 11, 5pm.



Signal Processing: From CT to DT

Signal-processing problems first conceived & addressed in CT:

• audio

− radio (noise/static reduction, automatic gain control, etc.)

− telephone (equalizers, echo-suppression, etc.)

− hi-fi (bass, treble, loudness, etc.)

• imaging

− television (brightness, tint, etc.)

− photography (image enhancement, gamma)

− x-rays (noise reduction, contrast enhancement)

− radar and sonar (noise reduction, object detection)

Such problems are increasingly solved with DT signal processing:

• MP3

• JPEG

• MPEG



Signal Processing: Acoustical

Mechano-acoustic components to optimize frequency response of

loudspeakers: e.g., “bass-reflex” system.

driver

reflex port



Signal Processing: Acoustico-Mechanical

Passive radiator for improved low-frequency preformance.

driver

passive
radiator



Signal Processing: Electronic

Low-cost electronics → new ways to overcome frequency limitations.
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Small speakers (4 inch): eight facing wall, one facing listener.

Electronic “equalizer” compensated for limited frequency response.



Signal Processing

Modern audio systems process sounds digitally.

A/D DT filter D/Ax(t) y(t)
x[n] y[n]



Signal Processing

Modern audio systems process sounds digitally.

Texas Instruments TAS3004

• 2 channels

• 24 bit ADC, 24 bit DAC

• 48 kHz sampling rate

• 100 MIPS

• $9.63 ($5.20 in bulk)
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DT Fourier Series and Frequency Response

Today: frequency representations for DT signals and systems.



Review: Complex Geometric Sequences

Complex geometric sequences are eigenfunctions of DT LTI systems.

Find response of DT LTI system (h[n]) to input x[n] = zn.

y[n] = (h ∗ x)[n] =
∞∑

k=−∞
h[k]zn−k = zn

∞∑
k=−∞

h[k]z−k = H(z) zn .

Complex geometrics (DT): analogous to complex exponentials (CT)

h[n]zn H(z) zn

h(t)est H(s) est



Review: Rational System Functions

A system described by a linear difference equation with constant

coefficients → system function that is a ratio of polynomials in z.

Example:

y[n− 2] + 3y[n− 1] + 4y[n] = 2x[n− 2] + 7x[n− 1] + 8x[n]

H(z) = 2z−2 + 7z−1 + 8
z−2 + 3z−1 + 4

= 2 + 7z + 8z2

1 + 3z + 4z2 ≡
N(z)
D(z)



DT Vector Diagrams

Factor the numerator and denominator of the system function to

make poles and zeros explicit.

H(z0) = K
(z0 − q0)(z0 − q1)(z0 − q2) · · ·
(z0 − p0)(z0 − p1)(z0 − p2) · · ·

q0
q0

z0 − q0
z0

z-plane
z0

Each factor in the numerator/denominator corresponds to a vector

from a zero/pole (here q0) to z0, the point of interest in the z-plane.

Vector diagrams for DT are similar to those for CT.



DT Vector Diagrams

Value of H(z) at z = z0 can be determined by combining the contri-

butions of the vectors associated with each of the poles and zeros.

H(z0) = K
(z0 − q0)(z0 − q1)(z0 − q2) · · ·
(z0 − p0)(z0 − p1)(z0 − p2) · · ·

The magnitude is determined by the product of the magnitudes.

|H(z0)| = |K| |(z0 − q0)||(z0 − q1)||(z0 − q2)| · · ·
|(z0 − p0)||(z0 − p1)||(z0 − p2)| · · ·

The angle is determined by the sum of the angles.

∠H(z0) = ∠K+∠(z0− q0) +∠(z0− q1) + · · ·−∠(z0−p0)−∠(z0−p1)−· · ·



DT Frequency Response

Response to eternal sinusoids.

Let x[n] = cos Ω0n (for all time):

x[n] = 1
2

(
e jΩ0n + e−jΩ0n

)
= 1

2

(
zn0 + zn1

)
where z0 = e jΩ0 and z1 = e−jΩ0.

The response to a sum is the sum of the responses:

y[n] = 1
2

(
H(z0) zn0 +H(z1) zn1

)
= 1

2

(
H(e jΩ0) e jΩ0n +H(e−jΩ0) e−jΩ0n

)



Conjugate Symmetry

For physical systems, the complex conjugate of H(e jΩ) is H(e−jΩ).

The system function is the Z transform of the unit-sample response:

H(z) =
∞∑

n=−∞
h[n]z−n

where h[n] is a real-valued function of n for physical systems.

H(e jΩ) =
∞∑

n=−∞
h[n]e−jΩn

H(e−jΩ) =
∞∑

n=−∞
h[n]e jΩn ≡

(
H(e jΩ)

)∗



DT Frequency Response

Response to eternal sinusoids.

Let x[n] = cos Ω0n (for all time), which can be written as

x[n] = 1
2

(
e jΩ0n + e−jΩ0n

)
.

Then

y[n] = 1
2

(
H(e jΩ0)e jΩ0n +H(e−jΩ0)e−jΩ0n

)
= Re

{
H(e jΩ0)e jΩ0n

}
= Re

{
|H(e jΩ0)|e j∠H(e jΩ0)e jΩ0n

}
= |H(e jΩ0)|Re

{
e jΩ0n+j∠H(e jΩ0)

}
y[n] =

∣∣∣H(e jΩ0)
∣∣∣ cos

(
Ω0n+ ∠H(e jΩ0)

)



DT Frequency Response

The magnitude and phase of the response of a system to an eternal

cosine signal is the magnitude and phase of the system function

evaluated on the unit circle.

H(z)cos(Ωn) |H(e jΩ)| cos
(

Ωn+ ∠H(e jΩ)
)

H(e jΩ) = H(z)|z=e jΩ



Finding Frequency Response with Vector Diagrams

z-plane

H(z) = z − q1
z − p1
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Finding Frequency Response with Vector Diagrams
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Comparision of CT and DT Frequency Responses

CT frequency response: H(s) on the imaginary axis, i.e., s = jω.

DT frequency response: H(z) on the unit circle, i.e., z = e jΩ.

s-plane

σ

ω
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DT Periodicity

DT frequency responses are periodic functions of Ω, with period 2π.

If Ω2 = Ω1 + 2πk where k is an integer then

H(e jΩ2) = H(e j(Ω1+2πk)) = H(e jΩ1e j2πk) = H(e jΩ1)

The periodicity of H(e jΩ) results because H(e jΩ) is a function of e jΩ,

which is itself periodic in Ω. Thus DT complex exponentials have

many “aliases.”

e jΩ2 = e j(Ω1+2πk) = e jΩ1e j2πk = e jΩ1

Because of this aliasing, there is a “highest” DT frequency: Ω = π.



Comparision of CT and DT Frequency Responses

CT frequency response: H(s) on the imaginary axis, i.e., s = jω.

DT frequency response: H(z) on the unit circle, i.e., z = e jΩ.
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Check Yourself

Consider 3 CT signals:

x1(t) = cos(3000t) ; x2(t) = cos(4000t) ; x3(t) = cos(5000t)

Each of these is sampled so that

x1[n] = x1(nT ) ; x2[n] = x2(nT ) ; x3[n] = x3(nT )

where T = 0.001.

Which list goes from lowest to highest DT frequency?

0. x1[n] x2[n] x3[n] 1. x1[n] x3[n] x2[n]

2. x2[n] x1[n] x3[n] 3. x2[n] x3[n] x1[n]

4. x3[n] x1[n] x2[n] 5. x3[n] x2[n] x1[n]



Check Yourself

The discrete signals are

x1[n] = cos[3n]
x2[n] = cos[4n]
x3[n] = cos[5n]

and the corresponding discrete frequencies are Ω = 3, 4 and 5, repre-

sented below with × marking e jΩ and o marking e−jΩ).

3

4
5

3

4
5



Check Yourself

Ω = 0.25

n

x[n] = cos(0.25n)



Check Yourself

Ω = 0.5

n

x[n] = cos(0.5n)



Check Yourself

Ω = 1

n

x[n] = cos(n)



Check Yourself

Ω = 2

n

x[n] = cos(2n)



Check Yourself

Ω = 3

n

x[n] = cos(3n)



Check Yourself

Ω = 4

n

x[n] = cos(4n) = cos(2π − 4n) ≈ cos(2.283n)

n



Check Yourself

Ω = 5

n

x[n] = cos(5n) = cos(2π − 5n) ≈ cos(1.283n)

n



Check Yourself

Ω = 6

n

x[n] = cos(6n) = cos(2π − 6n) ≈ cos(0.283n)

n



Check Yourself

The discrete signals are

x1[n] = cos[3n]
x2[n] = cos[4n]
x3[n] = cos[5n]

and the corresponding discrete frequencies are Ω = 3, 4 and 5, repre-

sented below with × marking e jΩ and o marking e−jΩ).
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Check Yourself

Consider 3 CT signals:

x1(t) = cos(3000t) ; x2(t) = cos(4000t) ; x3(t) = cos(5000t)

Each of these is sampled so that

x1[n] = x1(nT ) ; x2[n] = x2(nT ) ; x3[n] = x3(nT )

where T = 0.001.

Which list goes from lowest to highest DT frequency? 5

0. x1[n] x2[n] x3[n] 1. x1[n] x3[n] x2[n]

2. x2[n] x1[n] x3[n] 3. x2[n] x3[n] x1[n]

4. x3[n] x1[n] x2[n] 5. x3[n] x2[n] x1[n]



Check Yourself

What kind of filtering corresponds to the following?

z-plane

1. high pass 2. low pass

3. band pass 4. band stop (notch)

5. none of above



Check Yourself

What kind of filtering corresponds to the following? 1

z-plane

1. high pass 2. low pass

3. band pass 4. band stop (notch)

5. none of above



DT Fourier Series

DT Fourier series represent DT signals in terms of the amplitudes

and phases of harmonic components.

x[n] =
∑

ake
jkΩ0n

The period N of all harmonic components is the same (as in CT).



DT Fourier Series

There are (only) N distinct complex exponentials with period N .

(There were an infinite number in CT!)

If y[n] = e jΩn is periodic in N then

y[n] = e jΩn = y[n+N ] = e jΩ(n+N) = e jΩne jΩN

and e jΩN must be 1, and ejΩ must be one of the N th roots of 1.

Example: N = 8
z-plane



DT Fourier Series

There are N distinct complex exponentials with period N .

These can be combined via Fourier series to produce periodic time

signals with N independent samples.

n

Example: periodic in N=3

3 samples repeated in time 3 complex exponentials

n

Example: periodic in N=4

4 samples repeated in time 4 complex exponentials



DT Fourier Series

DT Fourier series represent DT signals in terms of the amplitudes

and phases of harmonic components.

x[n] = x[n+N ] =
N−1∑
k=0

ake
jkΩ0n ; Ω0 = 2π

N

N equations (one for each point in time n) in N unknowns (ak).

Example: N = 4
x[0]
x[1]
x[2]
x[3]

 =


e j

2π
N 0·0 e j

2π
N 1·0 e j

2π
N 2·0 e j

2π
N 3·0

e j
2π
N 0·1 e j

2π
N 1·1 e j

2π
N 2·1 e j

2π
N 3·1

e j
2π
N 0·2 e j

2π
N 1·2 e j

2π
N 2·2 e j

2π
N 3·2

e j
2π
N 0·3 e j

2π
N 1·3 e j

2π
N 2·3 e j

2π
N 3·3



a0
a1
a2
a3





DT Fourier Series

DT Fourier series represent DT signals in terms of the amplitudes

and phases of harmonic components.

x[n] = x[n+N ] =
N−1∑
k=0

ake
jkΩ0n ; Ω0 = 2π

N

N equations (one for each point in time n) in N unknowns (ak).

Example: N = 4
x[0]
x[1]
x[2]
x[3]

 =


1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j



a0
a1
a2
a3





Orthogonality

DT harmonics are orthogonal to each other (as were CT harmonics).

N−1∑
n=0

e jΩ0kne−jΩ0ln =
N−1∑
n=0

e jΩ0(k−l)n

=


N ; k = l

1−e jΩ0(k−l)N

1−e jΩ0(k−l) = 1−e j
2π
N

(k−l)N

1−e j
2π
N

(k−l)
= 0 ; k 6= l

= Nδ[k − l]



Sifting

Use orthogonality property of harmonics to sift out FS coefficients.

Assume x[n] =
N−1∑
k=0

ake
jkΩ0n

Multiply both sides by the complex conjugate of the lth harmonic,

and sum over time.

N−1∑
n=0

x[n]e−jlΩ0n =
N−1∑
n=0

N−1∑
k=0

ake
jkΩ0ne−jlΩ0n =

N−1∑
k=0

ak

N−1∑
n=0

e jkΩ0ne−jlΩ0n

=
N−1∑
k=0

akNδ[k − l] = Nal

ak = 1
N

N−1∑
n=0

x[n]e−jkΩ0n



DT Fourier Series

Since both x[n] and ak are periodic in N , the sums can be taken over

any N successive indices.

Notation. If f [n] is periodic in N , then
N−1∑
n=0

f [n] =
N∑
n=1

f [n] =
N+1∑
n=2

f [n] = · · · =
∑

n=<N>
f [n]

DT Fourier Series

ak= ak+N = 1
N

∑
n=<N>

x[n]e−jkΩ0n ; Ω0 = 2π
N

(“analysis” equation)

x[n]= x[n+N ] =
∑

k=<N>
ake

jkΩ0n (“synthesis” equation)



DT Fourier Series

DT Fourier series have simple matrix interpretations.

x[n] = x[n+ 4] =
∑

k=<4>
ake

jkΩ0n =
∑

k=<4>
ake

jk 2π
4 n =

∑
k=<4>

akj
kn


x[0]
x[1]
x[2]
x[3]

 =


1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j



a0
a1
a2
a3


ak = ak+4 = 1

4
∑

n=<4>
x[n]e−jkΩ0n = 1

4
∑

n=<4>
e−jk

2π
N n = 1

4
∑

n=<4>
x[n]j−kn


a0
a1
a2
a3

 = 1
4


1 1 1 1
1 −j −1 j

1 −1 1 −1
1 j −1 −j



x[0]
x[1]
x[2]
x[3]


These matrices are inverses of each other.



Discrete-Time Frequency Representations

Similarities and differences between CT and DT.

DT frequency response

• vector diagrams (similar to CT)

• frequency response on unit circle in z-plane (jω axis in CT)

DT Fourier series

• represent signal as sum of harmonics (similar to CT)

• finite number of periodic harmonics (unlike CT)

• finite sum (unlike CT)

The finite length of DT Fourier series make them especially useful

for signal processing! (more on this next time)


