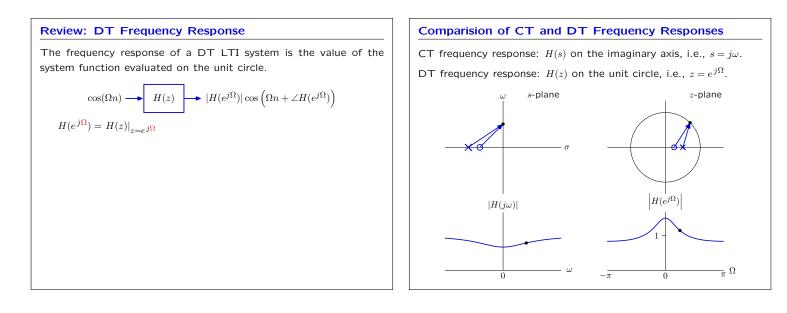
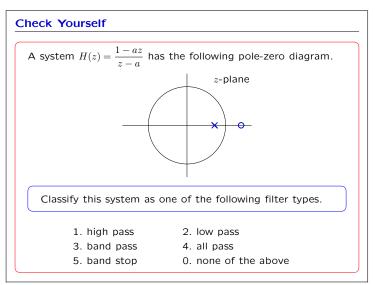
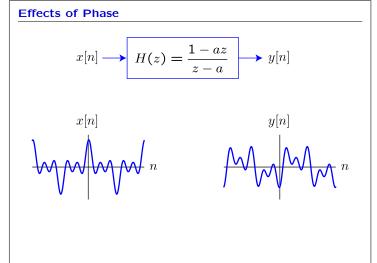
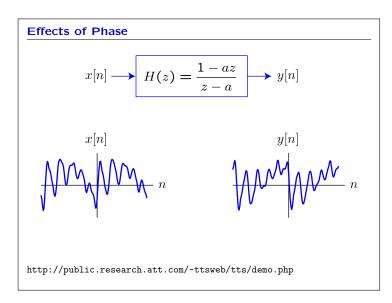
6.003: Signals and Systems	Mid-term Examination #3		
DT Fourier Representations	Wednesday, November 16, 7:30-9:30pm, Walker (50-340) No recitations on the day of the exam. Coverage: Lectures 1–18 Positations 1, 16		
	Recitations 1–16 Homeworks 1–10		
	Homework 10 will not be collected or graded. Solutions will be posted.		
	Closed book: 3 pages of notes $(8\frac{1}{2}\times 11 \text{ inches}; \text{ front and back}).$		
	No calculators, computers, cell phones, music players, or other aids.		
	Designed as 1-hour exam; two hours to complete.		
	Review session Monday at 3pm (36-112) and at open office hours.		
	Prior term midterm exams have been posted on the 6.003 website.		
November 10, 2011	Conflict? Contact freeman@mit.edu before Friday, Nov. 11, 5pm.		

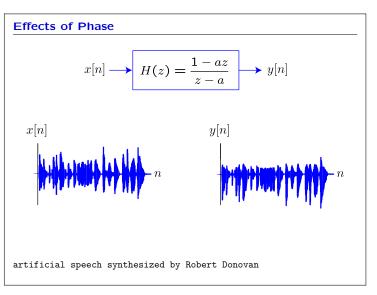


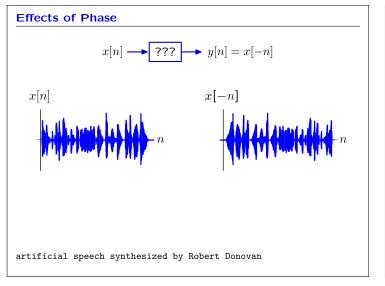


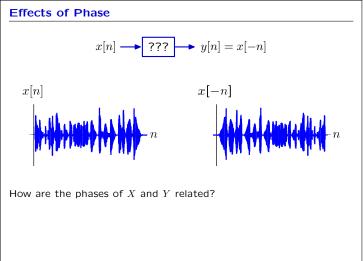


6.003: Signals and Systems









Review: Periodicity

DT frequency responses are periodic functions of $\Omega,$ with period $2\pi.$

If $\Omega_2=\Omega_1+2\pi k$ where k is an integer then

$$H(e^{j\Omega_2}) = H(e^{j(\Omega_1 + 2\pi k)}) = H(e^{j\Omega_1}e^{j2\pi k}) = H(e^{j\Omega_1})$$

The periodicity of $H(e^{j\Omega})$ results because $H(e^{j\Omega})$ is a function of $e^{j\Omega}$, which is itself periodic in Ω . Thus DT complex exponentials have many "aliases."

$$e^{j\Omega_2} = e^{j(\Omega_1 + 2\pi k)} = e^{j\Omega_1}e^{j2\pi k} = e^{j\Omega_1}e^{j2\pi k}$$

Because of this aliasing, there is a "highest" DT frequency: $\Omega=\pi.$

Review: Periodic Sinusoids

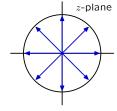
There are (only) N distinct complex exponentials with period N. (There were an infinite number in CT!)

If $y[n] = e^{j\Omega n}$ is periodic in N then

$$y[n]=e^{\,j\Omega n}=y[n+N]=e^{\,j\Omega(n+N)}=e^{\,j\Omega n}e^{\,j\Omega N}$$

and $e^{j\Omega N}$ must be 1, and $e^{j\Omega}$ must be one of the N^{th} roots of 1.

Example:
$$N = 8$$



6.003: Signals and Systems

Lecture 18

Review: DT Fourier SeriesDT Fourier series represent DT signals in terms of the amplitudes
and phases of harmonic components.DT Fourier Series
$$a_k = a_{k+N} = \frac{1}{N} \sum_{n=} x[n]e^{-jk\Omega_0 n}$$
; $\Omega_0 = \frac{2\pi}{N}$ ("analysis" equation)
 $x[n] = x[n+N] = \sum_{k=} a_k e^{jk\Omega_0 n}$ ("synthesis" equation)

DT Fourier Series

DT Fourier series have simple matrix interpretations.

$$\begin{split} x[n] &= x[n+4] = \sum_{k=<4>} a_k e^{jk\Omega_0 n} = \sum_{k=<4>} a_k e^{jk\frac{2\pi}{4}n} = \sum_{k=<4>} a_k j^{kn} \\ \begin{bmatrix} x[0]\\ x[1]\\ x[2]\\ x[3] \end{bmatrix} &= \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & j & -1 & -j\\ 1 & -1 & 1 & -1\\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} a_0\\ a_1\\ a_2\\ a_3 \end{bmatrix} \\ a_k &= a_{k+4} = \frac{1}{4} \sum_{n=<4>} x[n] e^{-jk\Omega_0 n} = \frac{1}{4} \sum_{n=<4>} e^{-jk\frac{2\pi}{N}n} = \frac{1}{4} \sum_{n=<4>} x[n] j^{-kn} \\ \begin{bmatrix} a_0\\ a_1\\ a_2\\ a_3 \end{bmatrix} \\ &= \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & -j & -1 & j\\ 1 & -1 & 1 & -1\\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} x[0]\\ x[1]\\ x[2]\\ x[3] \end{bmatrix} \\ \\ \text{These matrices are inverses of each other.} \end{split}$$

Scaling

FFT

 $[a_0]$

 a_1

 a_2

 a_3

 $= \begin{vmatrix} W_4 \\ W_4^0 \end{vmatrix}$

DT Fourier series are important computational tools. However, the DT Fourier series do not scale well with the length N.

$$\begin{split} a_k &= a_{k+2} = \frac{1}{2} \sum_{n = <2>} x[n] e^{-jk\Omega_0 n} = \frac{1}{2} \sum_{n = <2>} e^{-jk\frac{2\pi}{2}n} = \frac{1}{2} \sum_{n = <2>} x[n](-1)^{-kn} \\ \begin{bmatrix} a_0\\a_1 \end{bmatrix} &= \frac{1}{2} \begin{bmatrix} 1 & 1\\1 & -1 \end{bmatrix} \begin{bmatrix} x[0]\\x[1] \end{bmatrix} \\ a_k &= a_{k+4} = \frac{1}{4} \sum_{n = <4>} x[n] e^{-jk\Omega_0 n} = \frac{1}{4} \sum_{n = <4>} e^{-jk\frac{2\pi}{4}n} = \frac{1}{4} \sum_{n = <4>} x[n] j^{-kn} \\ \begin{bmatrix} a_0\\a_1\\a_2\\a_3 \end{bmatrix} &= \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1\\1 & -j & -1 & j\\1 & -1 & 1 & -1\\1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} x[0]\\x[1]\\x[2]\\x[3] \end{bmatrix} \\ \\ \text{Number of multiples increases as } N^2. \end{split}$$

Fast Fourier "Transf	orm"
----------------------	------

Exploit structure of Fourier series to simplify its calculation.

Divide FS of length 2N into two of length N (divide and conquer).

Matrix formulation of 8-point FS:

$\lceil c_0 \rceil$	$\int W_8^0$	W_8^0	W_8^0	W_8^0	W_8^0	W_{8}^{0}	W_{8}^{0}	W_8^0][r[0] ۲
c_1	W_8^{0}	W_8^1	W_8^2	W_{8}^{3}	W_8^4	$W_8^{\tilde{5}}$	W_{8}^{6}		x[1]
c_2	W_{8}^{0}	W_{8}^{2}	W_{8}^{4}	W_{8}^{6}	W_8^0	W_{8}^{2}	W_{8}^{4}	W_8^6	x[2]
c_3	W_8^0	W_{8}^{3}	W_{8}^{6}	W_8^1	W_8^4	W_{8}^{7}	W_{8}^{2}		x[3]
$ c_4 =$	W_{8}^{0}	W_8^4	W_8^0	W_8^4	W_8^0	W_8^4	W_8^0	W_8^4	x[4]
c_5	W_{8}^{0}	W_{8}^{5}	W_8^2	W_{8}^{7}	W_8^4	W_8^1	W_{8}^{6}	W_8^3	x[5]
c_6	W_{8}^{0}	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	W_{8}^{0}	W_{8}^{6}	W_{8}^{4}		x[6]
$\lfloor c_7 \rfloor$	$\lfloor W_8^0$	W_8^7	W_{8}^{6}	W_{8}^{5}	W_{8}^{4}	W_{8}^{3}	W_{8}^{2}	$W_8^1 \rfloor \lfloor$	x[7]
where W_N	$=e^{-j\frac{2\tau}{N}}$	T							
$8 \times 8 = 64$ multiplications									

_	_	_
-	⊢	

Break the original 8-point DTFS coefficients \boldsymbol{c}_k into two parts:

$$c_k = d_k + e_k$$

where d_k comes from the even-numbered x[n] (e.g., a_k) and e_k comes from the odd-numbered x[n] (e.g., b_k)

Odd-numbered	ontrios	in	x[n]	
Ouu-numbereu	entries		x n .	

Even-numbered entries in x[n]:

 $\left[W_4^0 \right]$

 W_4^0

 W_4^0

$\begin{bmatrix} b_0 \end{bmatrix}$	W_4^0	W_4^0	W_4^0	W_4^0	$\lceil x[1] \rceil$
b_1	W_4^0	W_4^1	W_4^2	W_4^3	$\begin{bmatrix} x[1] \\ x[3] \end{bmatrix}$
$ b_2 =$	W_4^0	W_4^2	W_4^0	W_4^2	x[5]
$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} =$	W_4^0	W_4^3	W_4^2	W_4^1	$\lfloor x[7] \rfloor$

Divide into two 4-point series (divide and conquer).

 $W_4^0 \quad W_4^0 \quad W_4^0$

 $W_4^1 \quad W_4^2 \quad W_4^3$

 $W_4^2 \quad W_4^0 \quad W_4^2$

 W_4^1

 $W_4^3 = W_4^2$

Sum of multiplications $= 2 \times (4 \times 4) = 32$: fewer than the previous 64.

 $\begin{bmatrix} x[0] \end{bmatrix}$

x[2]

x[4]

 $\lfloor x[6]$

6.003: Signals and Systems

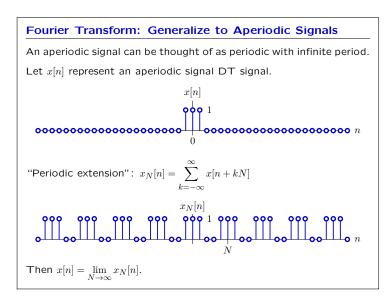
FFT The 4-point DTFS coefficients a_k of the even-numbered x[n] W_4^0 $W_4^0 \upharpoonright x[0]$ W^0_{\circ} W^0_{\circ} W^0_{\circ} W₀⁰] W_A^0 W_4^0 a_0 $\begin{bmatrix} x[0] \end{bmatrix}$ $W_8^2 = W_8^4$ $W_4^{\hat{0}}$ W^{0}_{s} W_8^4 W_{8}^{6} W_4^1 W_4^2 W_4^3 a_1 x[2]x[2] W_{4}^{4} W^{0}_{\circ} W_8^0 W_8^4 W_4^0 W_4^2 W_4^0 x[4]x[4] a_2 W_4^0 W_4^3 W_4^2 $W_4^1 \rfloor \lfloor x[6] \rfloor$ W_{8}^{0} W_{8}^{6} W^4_{\circ} $W_8^2 \rfloor \lfloor x[6] \rfloor$ a_3 contribute to the 8-point DTFS coefficients d_k : W^0_8 W^0_8 W_{8}^{0} W^0_8 [x[0]]d a_0 W_{8}^{0} W_{8}^{2} W_{8}^{4} W_{8}^{6} d_1 a_1 W_8^0 W_{8}^{0} W_{8}^{4} W_{8}^{4} d_2 x[2] a_2 W^0_{s} W_{8}^{6} W_{8}^{4} W_{8}^{2} d_3 a_3 = $W^0_{\mathbf{s}}$ W_{8}^{0} W_{8}^{0} W_{8}^{0} d_4 a_0 x[4] W_{8}^{2} W_{8}^{0} W_{8}^{4} W_{8}^{6} d_5 a_1 W^{0}_{s} $W_8^0 W_8^4 W_8^4$ $W_8^4 \\ W_8^2$ W_8^4 d_6 a_2 x[6] LW_{c}^{0} W_{8}^{6} d 0.2

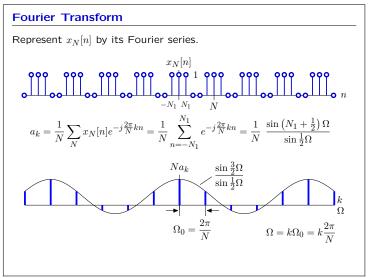
FFT						
The e_k components result	The e_k components result from the odd-number entries in $x[n]$.					
$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 \\ W_4^0 & W_4^2 & W_4^0 \\ W_4^0 & W_4^3 & W_4^2 \end{bmatrix}$	$ \begin{bmatrix} W_4^0 \\ W_4^3 \\ W_4^2 \\ W_4^2 \\ W_4^1 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[7] \end{bmatrix} = \begin{bmatrix} W_8^0 \\ W_8^0 \\ W_8^0 \\ W_8^0 \end{bmatrix} $	$ \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 \\ W_8^2 & W_8^4 & W_8^0 \\ W_8^4 & W_8^0 & W_8^4 \\ W_8^6 & W_8^4 & W_8^2 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[5] \\ x[7] \end{bmatrix} $				
$\begin{bmatrix} e_0\\ e_1\\ e_2\\ e_3\\ e_4\\ e_5\\ e_6\\ e_7 \end{bmatrix} = \begin{bmatrix} W_8^{0} b_0\\ W_8^{1} b_1\\ W_8^{2} b_2\\ W_8^{3} b_3\\ W_8^{4} b_0\\ W_8^{5} b_1\\ W_8^{6} b_2\\ W_8^{7} b_3 \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

FFT						
Combine a_k and b_k to get c_k .						
$\begin{bmatrix} c_0\\c_1\\c_2\\c_3\\c_4\\c_5\\c_6\\c_7 \end{bmatrix} = \begin{bmatrix} d_0 + e_0\\d_1 + e_1\\d_2 + e_2\\d_3 + e_3\\d_4 + e_4\\d_5 + e_5\\d_6 + e_6\\d_7 + e_7 \end{bmatrix} = \begin{bmatrix} a_0\\a_1\\a_2\\a_3\\a_0\\a_1\\a_2\\a_3 \end{bmatrix} + \begin{bmatrix} W_8^0 b_0\\W_8^1 b_1\\W_8^2 b_2\\W_8^3 b_3\\W_8^4 b_0\\W_8^5 b_1\\W_8^6 b_2\\W_8^7 b_3 \end{bmatrix}$						
FFT procedure: • compute a_k and b_k : $2 \times (4 \times 4) = 32$ multiplies • combine $c_k = a_k + W^k b_k$: 8 multiples						

- combine $c_k = a_k + W_8^k b_k$: 8 multiples
- total 40 multiplies: fewer than the orginal $8\times8=64$ multiplies

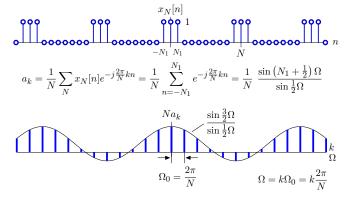
Scaling of FFT algorithm How does the new algorithm scale? Let M(N) = number of multiplies to perform an N point FFT. M(1) = 0 M(2) = 2M(1) + 2 = 2 $M(4) = 2M(2) + 4 = 2 \times 4$ $M(8) = 2M(4) + 8 = 3 \times 8$ $M(16) = 2M(8) + 16 = 4 \times 16$ $M(32) = 2M(16) + 32 = 5 \times 32$ $M(64) = 2M(32) + 64 = 6 \times 64$ $M(128) = 2M(64) + 128 = 7 \times 128$... $M(N) = (\log_2 N) \times N$ Significantly smaller than N^2 for N large.

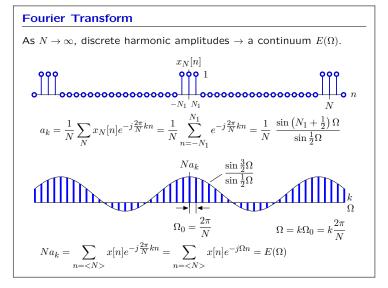


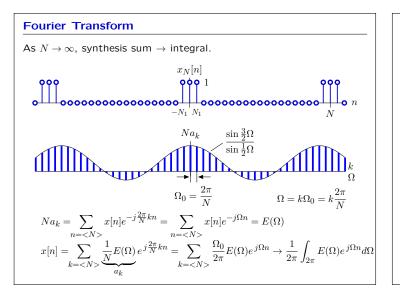


Lecture 18

Doubling period doubles # of harmonics in given frequency interval. $T_{M}[n]$







Fourier Transform

Replacing $E(\Omega)$ by $X(e^{j\Omega})$ yields the DT Fourier transform relations.

$$\begin{split} X(e^{j\Omega}) &= \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} & (\text{``analysis'' equation}) \\ x[n] &= \frac{1}{2\pi} \int_{2\pi} X(e^{j\Omega})e^{j\Omega n}d\Omega & (\text{``synthesis'' equation}) \end{split}$$

Relation between Fourier and Z Transforms

If the Z transform of a signal exists and if the ROC includes the unit circle, then the Fourier transform is equal to the Z transform evaluated on the unit circle.

Z transform: $_{\infty}$

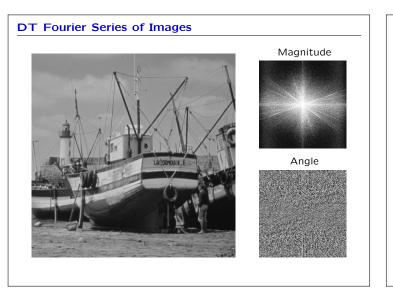
$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$

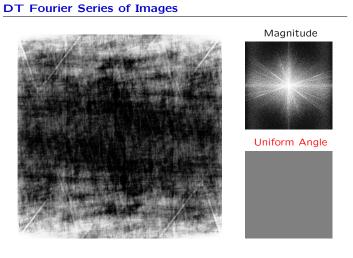
DT Fourier transform:

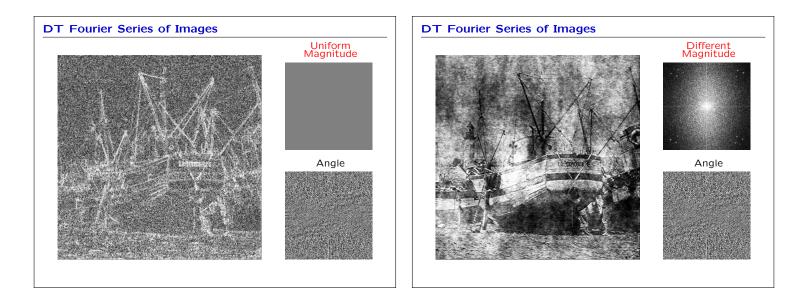
$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = H(z)\big|_{z=e^{j\Omega}}$$

Relation between Fourier and Z Transforms					
Fourier transform "inherits" properties of Z transform.					
Property	x[n]	X(z)	$X(e^{j\Omega})$		
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(s) + bX_2(s)$	$aX_1(e^{j\Omega}) + bX_2(e^{j\Omega})$		
Time shift	$x[n-n_0]$	$z^{-n_0}X(z)$	$e^{-j\Omega n_0}X(e^{j\Omega})$		
Multiply by n	nx[n]	$-z\frac{d}{dz}X(z)$	$j\frac{d}{d\Omega}X(e^{j\Omega})$		
Convolution	$(x_1 \ast x_2)[n]$	$X_1(z) \times X_2(z)$	$X_1(e^{j\Omega}) \times X_2(e^{j\Omega})$		

Lecture 18







Fourier Representations: Summary

Thinking about signals by their frequency content and systems as filters has a large number of practical applications.