

Filtering

LTI systems "filter" signals based on their frequency content.

Fourier transforms represent signals as sums of complex exponentials.

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

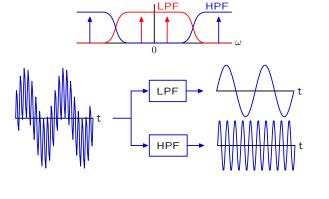
Complex exponentials are eigenfunctions of LTI systems. $e^{j\omega t} \to H(j\omega) e^{j\omega t}$

LTI systems "filter" signals by adjusting the amplitudes and phases of each frequency component.

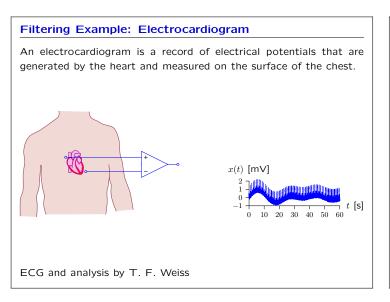
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \quad \rightarrow \quad y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\omega) X(j\omega) e^{j\omega t} d\omega$$

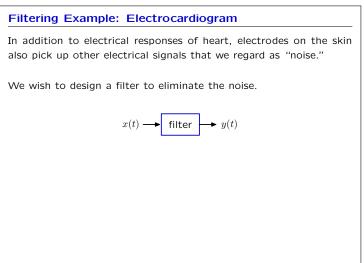
Filtering

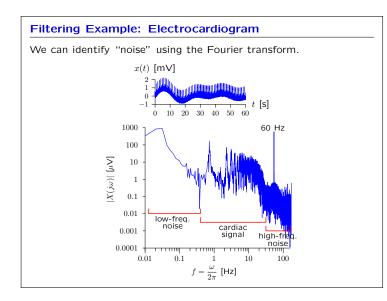
Systems can be designed to selectively pass certain frequency bands. Examples: low-pass filter (LPF) and high-pass filter (HPF).

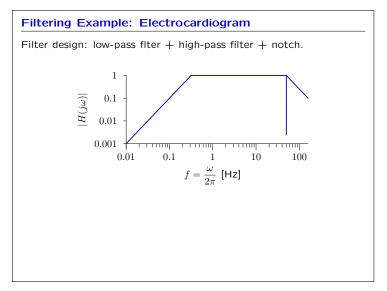


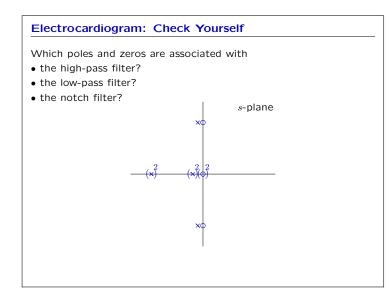
Lecture 20

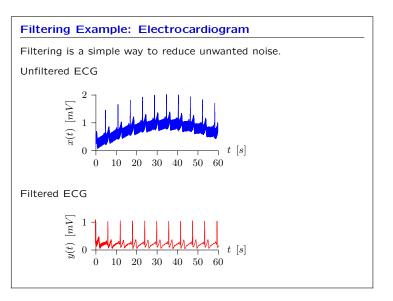




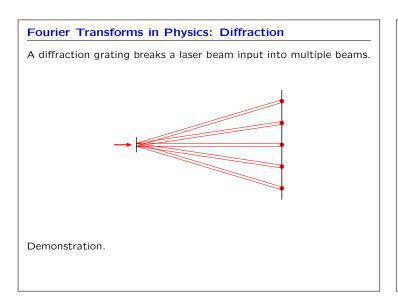






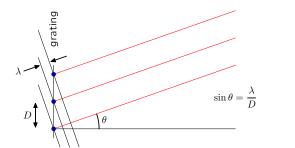


Lecture 20



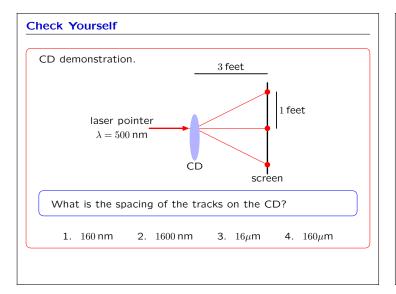
Fourier Transforms in Physics: Diffraction

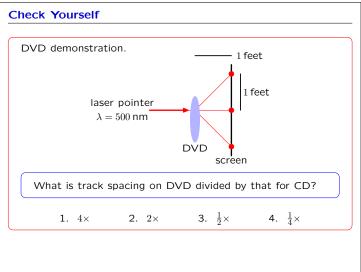
Multiple beams result from periodic structure of grating (period D).

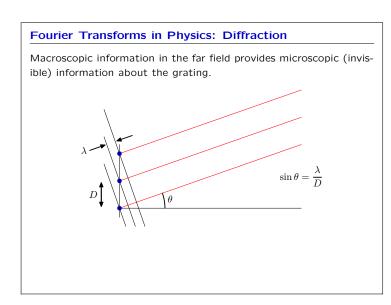


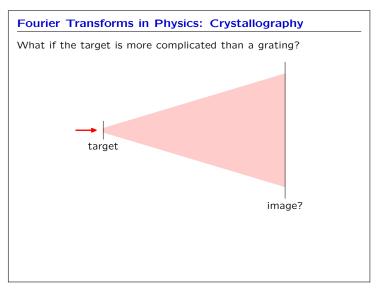
Viewed at a distance from angle θ , scatterers are separated by $D \sin \theta$.

Constructive interference if $D\sin\theta = n\lambda$, i.e., if $\sin\theta = \frac{n\lambda}{D}$ \rightarrow periodic array of dots in the far field

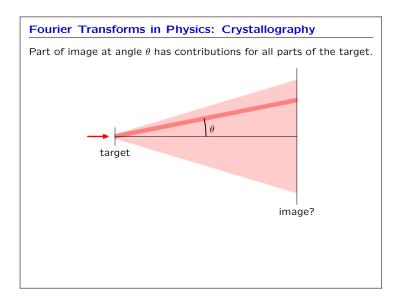


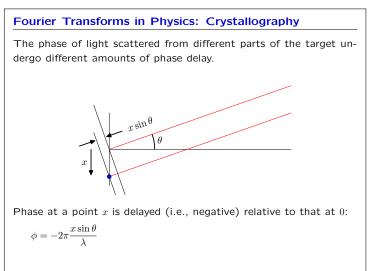


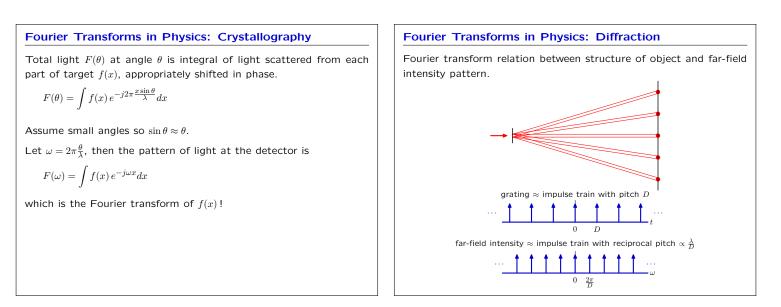


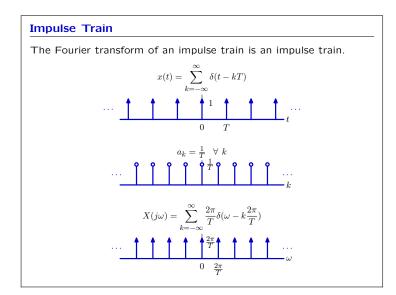


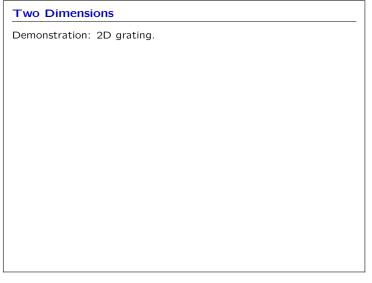
Lecture 20





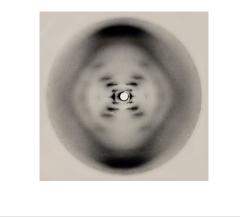


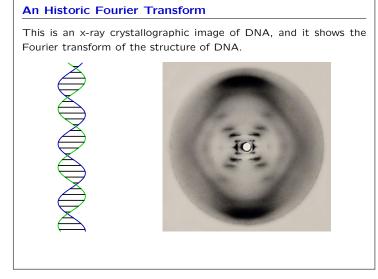


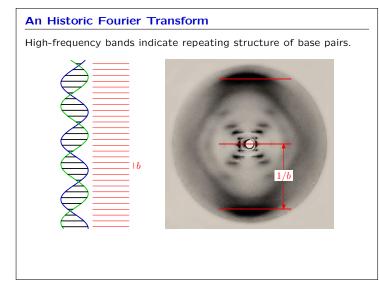


An Historic Fourier Transform

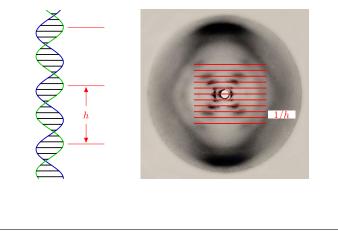
Taken by Rosalind Franklin, this image sparked Watson and Crick's insight into the double helix.





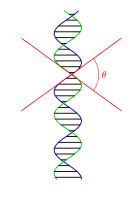


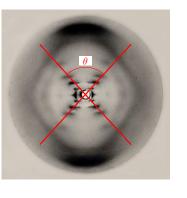
Low-frequency bands indicate a lower frequency repeating structure.



An Historic Fourier Transform

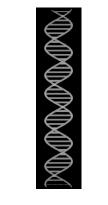
Tilt of low-frequency bands indicates tilt of low-frequency repeating structure: the double helix!





Simulation

Easy to calculate relation between structure and Fourier transform.



Fourier Transform Summary
Represent signals by their frequency content.
Key to "filtering," and to signal-processing in general.
Important in many physical phenomenon: x-ray crystallography.