6.003: Signals and Systems

Sampling and Quantization

November 29, 2011

Last Time: Sampling

Sampling allows the use of modern digital electronics to process, record, transmit, store, and retrieve CT signals.

audio: MP3, CD, cell phonepictures: digital camera, printer

video: DVD

everything on the web

Last Time: Sampling Theory

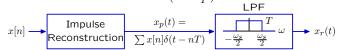
Sampling

$$x(t) \to x[n] = x(nT)$$

Impulse Reconstruction



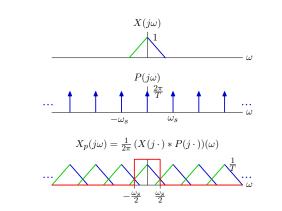
Bandlimited Reconstruction $\left(\omega_s = \frac{2\pi}{T}\right)$



Sampling Theorem: If $X(j\omega)=0 \ \forall \ |\omega|>\frac{\omega_s}{2}$ then $x_r(t)=x(t).$

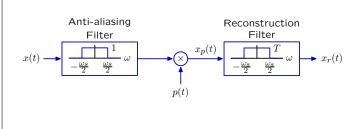
Aliasing

Frequencies outside the range $\frac{-\omega_s}{2} < \omega < \frac{\omega_s}{2}$ alias.



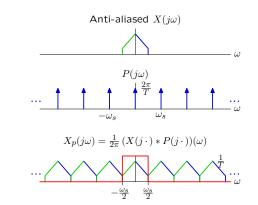
Anti-Aliasing Filter

To avoid aliasing, remove frequency components that alias before sampling.



Anti-Aliasing

Remove frequencies outside the range $\frac{-\omega_s}{2}<\omega<\frac{\omega_s}{2}$ before sampling to avoid aliasing.



Today

Digital recording, transmission, storage, and retrieval requires discrete representations of both time (e.g., sampling) and amplitude.

- audio: MP3, CD, cell phone
- pictures: digital camera, printer
- video: DVD
- everything on the web

Quantization: discrete representations for amplitudes

Check Yourself

We hear sounds that range in amplitude from 1,000,000 to 1.

How many bits are needed to represent this range?

- 1. 5 bits
- 2. 10 bits
- 3. 20 bits
- 4. 30 bits
- 5. 40 bits

Quantization Demonstration

Quantizing Music

- 16 bits/sample
- 8 bits/sample
- 6 bits/sample
- 4 bits/sample
- 3 bits/sample
- 2 bit/sample

 $\sf J.S.$ Bach, Sonata No. 1 in G minor Mvmt. IV. Presto Nathan Milstein, violin

$\begin{array}{c} \textbf{Quantization} \\ \hline \textbf{We measure discrete amplitudes in bits.} \\ \hline \\ \textbf{y} \\ \textbf{y} \\ \textbf{0} \\ \textbf{1} \\ \textbf{0} \\ \textbf{1} \\ \textbf{0} \\ \textbf{0$

Quantizing Images

Converting an image from a continuous representation to a discrete representation involves the same sort of issues.

This image has 280×280 pixels, with brightness quantized to 8 bits.

Check Yourself

What is the most objectionable artifact of coarse quantization?

8 bit image

4 bit image

Dithering

Dithering: adding a small amount ($\pm\frac{1}{2}$ quantum) of random noise to the image before quantizing.

Since the noise is different for each pixel in the band, the noise causes some of the pixels to quantize to a higher value and some to a lower. But the average value of the brightness is preserved.

Check Yourself

What is the most objectionable artifact of dithering?

3 bit image

3 bit dithered image

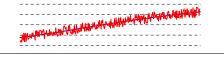
Quantization Schemes

Example: slowly changing backgrounds.

Quantization: y = Q(x)

Quantization with dither: y = Q(x + n)

Quantization with Robert's technique: y = Q(x+n) - n



Quantizing Images with Robert's Method

3 bits with dither

3 bits with Robert's method

Quantizing Images: 3 bits

3 bits

Robert's

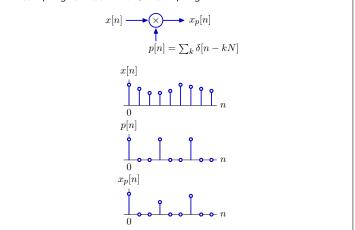
Progressive Refinement

Trading precision for speed.

Start by sending a crude representation, then progressively update with increasing higher fidelity versions.

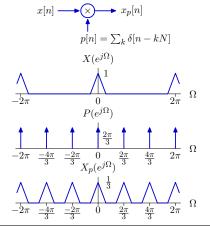
Discrete-Time Sampling (Resampling)

DT sampling is much like CT sampling.



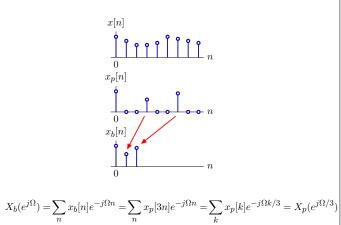
Discrete-Time Sampling

As in CT, sampling introduces additional copies of $X(e^{j\Omega})$.



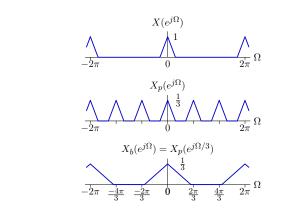
Discrete-Time Sampling

Sampling a finite sequence gives rise to a shorter sequence.



Discrete-Time Sampling

But the shorter sequence has a wider frequency representation.



Discrete-Time Sampling High Pass Down-Sample Low Pass

Discrete-Time Sampling: Progressive Refinement

Perceptual Coding

Quantizing in the Fourier domain: JPEG.

JPEG

Example: JPEG ("Joint Photographic Experts Group") encodes images by a sequence of transformations:

- color encoding
- DCT (discrete cosine transform): a kind of Fourier series
- quantization to achieve perceptual compression (lossy)
- Huffman encoding: lossless information theoretic coding

We will focus on the DCT and quantization of its components.

- the image is broken into 8×8 pixel blocks
- ullet each block is represented by its 8×8 DCT coefficients
- each DCT coefficient is quantized, using higher resolutions for coefficients with greater perceptual importance

JPEG

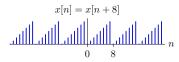
Discrete cosine transform (DCT) is similar to a Fourier series, but high-frequency artifacts are typically smaller.

Example: imagine coding the following 8×8 block.

For a two-dimensional transform, take the transforms of all of the rows, assemble those results into an image and then take the transforms of all of the columns of that image.

JPEG

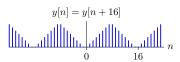
Periodically extend a row and represent it with a Fourier series.



There are 8 distinct Fourier series coefficients.
$$a_k=\frac{1}{8}\sum_{n=<8>}x[n]e^{-jk\Omega_0n}~;~~\Omega_0=\frac{2\pi}{8}$$

JPEG

DCT is based on a different periodic representation, shown below.

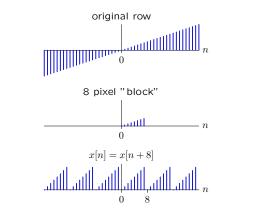


Check Yourself

Which signal has greater high frequency content? x[n] = x[n+8] x[n] = x[n+8] y[n] = y[n+16] y[n] = y[n+16] y[n] = y[n+16]

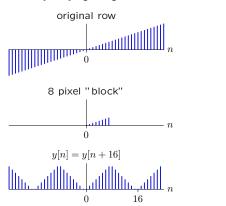
JPEG

Periodic extension of an 8×8 pixel block can lead to a discontinuous function even when the "block" was taken from a smooth image.



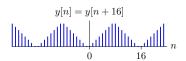
JPEG

Periodic extension of the type done for JPEG generates a continuous function from a smoothly varying image.



JPEG

Although periodic in ${\cal N}=16,\ y[n]$ can be represented by just 8 distinct DCT coefficients.



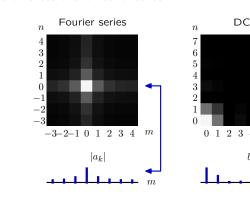
$$b_k = \sum_{n=0}^{7} y[n] \cos \left(\frac{\pi k}{N} \left(n + \frac{1}{2} \right) \right)$$

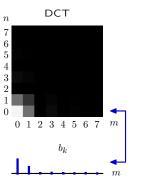
This results because y[n] is symmetric about $n=-\frac{1}{2}$, and this symmetry introduces redundancy in the Fourier series representation.

Notice also that the DCT of a real-valued signal is real-valued.

JPEG

The magnitudes of the higher order DCT coefficients are smaller than those of the Fourier series.





JPEG

Humans are less sensitive to small deviations in high frequency components of an image than they are to small deviations at low frequencies. Therefore, the DCT coefficients are **quantized** more coarsely at high frequencies.

Divide coefficient b[m,n] by q[m,n] and round to nearest integer.

q[m,n]				m	\rightarrow			
	16	11	10	16	24	40	51	61
	12	12	14		26	58	60	55
	14	13		24	40		69	56
n	14	17			51		80	62
1	18	22	37		68		103	
*	24	35	55		81			
	49	64	78		103			
	72	92	95		112		_	

Check Yourself

Which of the following tables of q[m,n] (top or bottom) will result in higher "quality" images?

JPEG

Finally, encode the DCT coefficients for each block using "runlength" encoding followed by an information theoretic (lossless) "Huffman" scheme, in which frequently occuring patterns are represented by short codes.

The "quality" of the image can be adjusted by changing the values of q[m,n]. Large values of q[m,n] result in large "runs" of zeros, which compress well.

