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Last Time: Sampling

Sampling allows the use of modern digital electronics to process,

record, transmit, store, and retrieve CT signals.

• audio: MP3, CD, cell phone

• pictures: digital camera, printer

• video: DVD

• everything on the web



Last Time: Sampling Theory
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Sampling Theorem: If X(jω) = 0 ∀ |ω| > ωs
2 then xr(t) = x(t).



Aliasing

Frequencies outside the range
−ωs

2 < ω <
ωs
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Anti-Aliasing Filter

To avoid aliasing, remove frequency components that alias before

sampling.
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Anti-Aliasing

Remove frequencies outside the range
−ωs

2 < ω <
ωs
2 before sampling

to avoid aliasing.
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Today

Digital recording, transmission, storage, and retrieval requires dis-

crete representations of both time (e.g., sampling) and amplitude.

• audio: MP3, CD, cell phone

• pictures: digital camera, printer

• video: DVD

• everything on the web

Quantization: discrete representations for amplitudes



Quantization

We measure discrete amplitudes in bits.
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Check Yourself

We hear sounds that range in amplitude from 1,000,000 to 1.

How many bits are needed to represent this range?

1. 5 bits

2. 10 bits

3. 20 bits

4. 30 bits

5. 40 bits



Check Yourself

How many bits are needed to represent 1,000,000:1?

bits range

1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1, 024
11 2, 048
12 4, 096
13 8, 192
14 16, 384
15 32, 768
16 65, 536
17 131, 072
18 262, 144
19 524, 288
20 1, 048, 576



Check Yourself

We hear sounds that range in amplitude from 1,000,000 to 1.

How many bits are needed to represent this range? 3

1. 5 bits

2. 10 bits

3. 20 bits

4. 30 bits

5. 40 bits



Quantization Demonstration

Quantizing Music

• 16 bits/sample

• 8 bits/sample

• 6 bits/sample

• 4 bits/sample

• 3 bits/sample

• 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization

We measure discrete amplitudes in bits.
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Example: audio CD

2 channels× 16 bits

sample
× 44, 100 samples

sec
× 60 sec

min
× 74 min ≈ 6.3 G bits

≈ 0.78 G bytes



Quantizing Images

Converting an image from a continuous representation to a discrete

representation involves the same sort of issues.

This image has 280× 280 pixels, with brightness quantized to 8 bits.



Quantizing Images

8 bit image 7 bit image



Quantizing Images

8 bit image 6 bit image



Quantizing Images

8 bit image 5 bit image



Quantizing Images

8 bit image 4 bit image



Quantizing Images

8 bit image 3 bit image



Quantizing Images

8 bit image 2 bit image



Quantizing Images

8 bit image 1 bit image



Check Yourself

What is the most objectionable artifact of coarse quantization?

8 bit image 4 bit image



Dithering

One very annoying artifact is banding caused by clustering of pixels

that quantize to the same level.

Banding can be reduced by dithering.

Dithering: adding a small amount (±1
2 quantum) of random noise to

the image before quantizing.

Since the noise is different for each pixel in the band, the noise

causes some of the pixels to quantize to a higher value and some to

a lower. But the average value of the brightness is preserved.



Quantizing Images with Dither

7 bit image 7 bits with dither



Quantizing Images with Dither

6 bit image 6 bits with dither



Quantizing Images with Dither

5 bit image 5 bits with dither



Quantizing Images with Dither

4 bit image 4 bits with dither



Quantizing Images with Dither

3 bit image 3 bits with dither



Quantizing Images with Dither

2 bit image 2 bits with dither



Quantizing Images with Dither

1 bit image 1 bit with dither



Check Yourself

What is the most objectionable artifact of dithering?

3 bit image 3 bit dithered image



Check Yourself

What is the most objectionable artifact of dithering?

One annoying feature of dithering is that it adds noise.



Quantization Schemes

Example: slowly changing backgrounds.

Quantization: y = Q(x)

Quantization with dither: y = Q(x+ n)



Check Yourself

What is the most objectionable artifact of dithering?

One annoying feature of dithering is that it adds noise.

Robert’s technique: add a small amount (±1
2 quantum) of random

noise before quantizing, then subtract that same amount of random

noise.



Quantization Schemes

Example: slowly changing backgrounds.

Quantization: y = Q(x)

Quantization with dither: y = Q(x+ n)

Quantization with Robert’s technique: y = Q(x+ n)− n



Quantizing Images with Robert’s Method

7 bits with dither 7 bits with Robert’s method



Quantizing Images with Robert’s Method

6 bits with dither 6 bits with Robert’s method



Quantizing Images with Robert’s Method

5 bits with dither 5 bits with Robert’s method



Quantizing Images with Robert’s Method

4 bits with dither 4 bits with Robert’s method



Quantizing Images with Robert’s Method

3 bits with dither 3 bits with Robert’s method



Quantizing Images with Robert’s Method

2 bits with dither 2 bits with Robert’s method



Quantizing Images with Robert’s Method

1 bits with dither 1 bit with Robert’s method



Quantizing Images: 3 bits

8 bits 3 bits

dither Robert’s



Quantizing Images: 2 bits

8 bits 2 bits

dither Robert’s



Quantizing Images: 1 bit

8 bits 1 bit

dither Robert’s



Progressive Refinement

Trading precision for speed.

Start by sending a crude representation, then progressively update

with increasing higher fidelity versions.



Discrete-Time Sampling (Resampling)

DT sampling is much like CT sampling.
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Discrete-Time Sampling

As in CT, sampling introduces additional copies of X(ejΩ).
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Discrete-Time Sampling

Sampling a finite sequence gives rise to a shorter sequence.
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Discrete-Time Sampling

But the shorter sequence has a wider frequency representation.
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Discrete-Time Sampling



Discrete-Time Sampling



Discrete-Time Sampling



Discrete-Time Sampling



Discrete-Time Sampling



Discrete-Time Sampling



Discrete-Time Sampling



Discrete-Time Sampling

Insert zeros between samples to upsample the images.
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Discrete-Time Sampling

Then filter out the additional copies in frequency.
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Discrete-Time Sampling: Progressive Refinement



Discrete-Time Sampling: Progressive Refinement



Discrete-Time Sampling: Progressive Refinement



Discrete-Time Sampling: Progressive Refinement



Discrete-Time Sampling: Progressive Refinement



Discrete-Time Sampling



Perceptual Coding

Quantizing in the Fourier domain: JPEG.



JPEG

Example: JPEG (“Joint Photographic Experts Group”) encodes im-

ages by a sequence of transformations:

• color encoding

• DCT (discrete cosine transform): a kind of Fourier series

• quantization to achieve perceptual compression (lossy)

• Huffman encoding: lossless information theoretic coding

We will focus on the DCT and quantization of its components.

• the image is broken into 8× 8 pixel blocks

• each block is represented by its 8× 8 DCT coefficients

• each DCT coefficient is quantized, using higher resolutions for

coefficients with greater perceptual importance



JPEG

Discrete cosine transform (DCT) is similar to a Fourier series, but

high-frequency artifacts are typically smaller.

Example: imagine coding the following 8× 8 block.

For a two-dimensional transform, take the transforms of all of the

rows, assemble those results into an image and then take the trans-

forms of all of the columns of that image.



JPEG

Periodically extend a row and represent it with a Fourier series.

x[n] = x[n+ 8]

n
0 8

There are 8 distinct Fourier series coefficients.

ak = 1
8
∑

n=<8>
x[n]e−jkΩ0n ; Ω0 = 2π

8



JPEG

DCT is based on a different periodic representation, shown below.

y[n] = y[n+ 16]

n
0 16



Check Yourself

Which signal has greater high frequency content?

x[n] = x[n+ 8]

n
0 8

y[n] = y[n+ 16]

n
0 16



Check Yourself

The first signal, x[n], has discontinuous amplitude. The second sig-

nal, y[n] is not discontinuous, but has discontinuous slope.

x[n] = x[n+ 8]

n
0 8

y[n] = y[n+ 16]

n
0 16

The magnitude of its Fourier series coefficients decreases faster with

k for the second than for the first.



Check Yourself

Which signal has greater high frequency content? x[n]

x[n] = x[n+ 8]

n
0 8

y[n] = y[n+ 16]

n
0 16



JPEG

Periodic extension of an 8×8 pixel block can lead to a discontinuous

function even when the “block” was taken from a smooth image.

original row

n
0

8 pixel ”block”

n
0

x[n] = x[n+ 8]

n
0 8



JPEG

Periodic extension of the type done for JPEG generates a continuous

function from a smoothly varying image.

original row

n
0

8 pixel ”block”

n
0

y[n] = y[n+ 16]

n
0 16



JPEG

Although periodic in N = 16, y[n] can be represented by just 8 distinct

DCT coefficients.

y[n] = y[n+ 16]

n
0 16

bk =
7∑

n=0
y[n] cos

(
πk

N

(
n+ 1

2

))

This results because y[n] is symmetric about n = −1
2 , and this sym-

metry introduces redundancy in the Fourier series representation.

Notice also that the DCT of a real-valued signal is real-valued.



JPEG

The magnitudes of the higher order DCT coefficients are smaller

than those of the Fourier series.
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JPEG

Humans are less sensitive to small deviations in high frequency com-

ponents of an image than they are to small deviations at low frequen-

cies. Therefore, the DCT coefficients are quantized more coarsely

at high frequencies.

Divide coefficient b[m,n] by q[m,n] and round to nearest integer.

q[m,n] m →

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

n 14 17 22 29 51 87 80 62

↓ 18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99



Check Yourself

Which of the following tables of q[m,n] (top or bottom)

will result in higher “quality” images?

q[m, n] m →
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56

n 14 17 22 29 51 87 80 62
↓ 18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

q[m, n] m →
32 22 20 32 48 80 102 122
24 24 28 38 52 116 120 110
28 26 32 48 80 114 139 112

n 28 34 44 58 102 174 160 124
↓ 36 44 74 112 136 218 206 154

48 70 110 128 162 208 226 194
98 128 156 174 206 256 240 202

144 184 190 196 224 200 206 198



Check Yourself

Which of the following tables of q[m,n] (top or bottom)

will result in higher “quality” images? top

q[m, n] m →
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56

n 14 17 22 29 51 87 80 62
↓ 18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

q[m, n] m →
32 22 20 32 48 80 102 122
24 24 28 38 52 116 120 110
28 26 32 48 80 114 139 112

n 28 34 44 58 102 174 160 124
↓ 36 44 74 112 136 218 206 154

48 70 110 128 162 208 226 194
98 128 156 174 206 256 240 202

144 184 190 196 224 200 206 198



JPEG

Finally, encode the DCT coefficients for each block using “run-

length” encoding followed by an information theoretic (lossless)

“Huffman” scheme, in which frequently occuring patterns are

represented by short codes.

The “quality” of the image can be adjusted by changing the values

of q[m,n]. Large values of q[m,n] result in large “runs” of zeros,

which compress well.



JPEG: Results

1%: 1666 bytes 10%: 2550 bytes 20%: 3595 bytes

40%: 5318 bytes 80%:

10994 bytes

100%: 47k bytes


