6.003: Signals and Systems	6.003: Signals and Systems			
	Today's handouts:	Single package containing		
Signals and Systems		Slides for Lecture 1		
		Subject Information & Calendar		
	Lecturer:	Denny Freeman (freeman@mit.edu)		
	Instructors:	Peter Hagelstein (phagelstein@aol.com)		
		Rahul Sarpeshkar (rahuls@mit.edu)		
	TAs:	Sefa Demirtas (sefa@mit.edu)		
		Ulric Ferner (uferner@mit.edu)		
		Alison Laferriere (alaferri@mit.edu)		
	Website:	mit.edu/6.003		
	Text:	Signals and Systems – Oppenheim and Willsky		
February 2, 2010				
February 2, 2010				

6.003: Homework

Doing the homework is essential for understanding the content.

- where subject matter is/isn't learned
- equivalent to "practice" in sports or music

Weekly Homework Assignments

- Conventional Homework Problems plus
- Engineering Design Problems (Python/Matlab)

Open Office Hours !

- Stata Basement (32-044)
- Mondays and Tuesdays, afternoons and early evenings

6.003: Signals and Systems

Collaboration Policy

- Discussion of concepts in homework is encouraged
- Sharing of homework or code is not permitted and will be reported to the COD

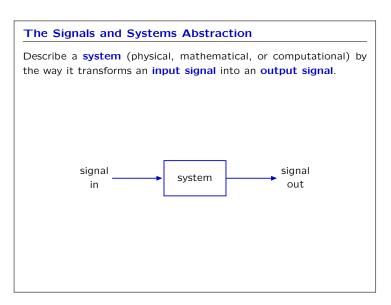
Firm Deadlines

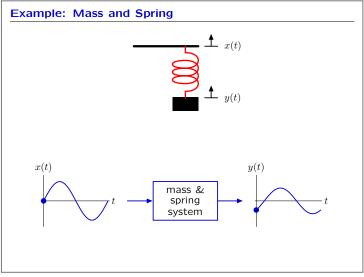
- Homework must be submitted in recitation on due date
- Each student can submit one late homework assignment without penalty.
- Grades on other late assignments will be multiplied by 0.5 (unless excused by an Instructor, Dean, or Medical Official).

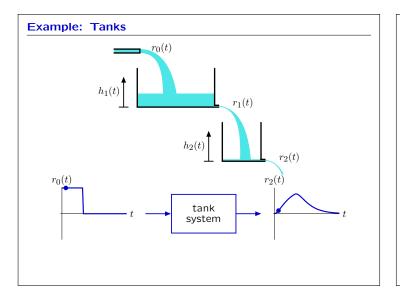
	Tuesday	Wedn	esday	Thursday	Friday
Feb 2	L1: Signals and Systems		R1: Continuous & Discrete Systems	L2: Discrete-Time Systems	R2: Difference Equations
Feb 9	L3: Feedback, Cycles, and Modes	HW1 due	R3: Feedback, Cycles, and Modes	L4: CT Operator Representations	R4: CT Systems
Feb 16	Presidents Day: Monday Schedule	HW2 due	R5: CT Operator Representations	L5: Second-Order Systems	R6: Second-Order Systems
Feb 23	L6: Laplace and Z Transforms	HW3 due	R7: Laplace and Z Transforms	L7: Transform Properties	R8: Transform Properties
Mar 2	L8: Convolution; Impulse Response	EX4	Exam 1 no recitation	L9: Frequency Response	R9: Convolution and Freq. Resp.
Mar 9	L10: Bode Diagrams	HW5 due	R10: Bode Diagrams	L11: DT Feedback and Control	R11: Feedback and Control
Mar 16	L12: CT Feedback and Control	HW6 due	R12: CT Feedback and Control	L13: CT Feedback and Control	R13: CT Feedback and Control
Mar 23	Spring Week				
Mar 30	L14: CT Fourier Series	HW7	R14: CT Fourier Series	L15: CT Fourier Series	R15: CT Fourier Series
Apr 6	L16: CT Fourier Transform	EX8 due	Exam 2 no recitation	L17: CT Fourier Transform	R16: CT Fourier Transform
Apr 13	L18: DT Fourier Transform	HW9 due	R17: DT Fourier Transform	L19: DT Fourier Transform	R18: DT Fourier Transform
Apr 20	Patriots Day Vacation	HW10	R19: Fourier Transforms	L20: Fourier Relations	R20: Fourier Relations
Apr 27	L21: Sampling	EX11 due	Exam 3 no recitation	L22: Sampling	R21: Sampling
May 4	L23: Modulation	HW12 due	R22: Modulation	L24: Modulation	R23: Modulation
	L25: Applications	EX13	R24: Review	Breakfast with	Study Period

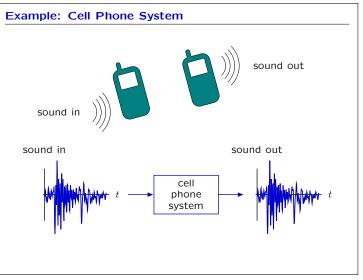
6.003: Signals and Systems

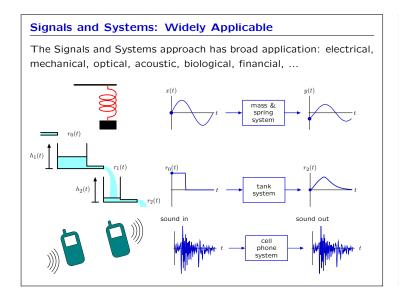
Weekly meetings with class representatives

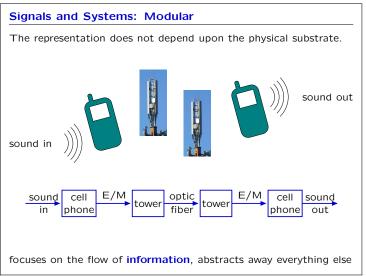

- help staff understand student perspective
- learn about teaching

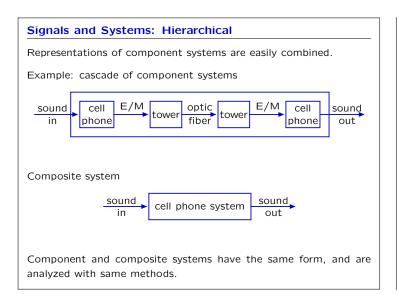

One representative from each section (4 total)

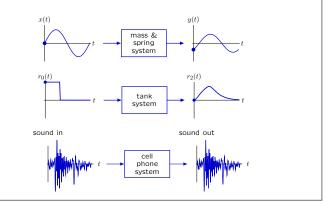

Tentatively meet on Thursday afternoon

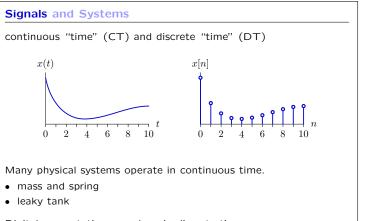

Interested? ... Send email to freeman@mit.edu


Lecture 1



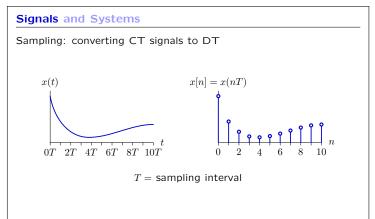


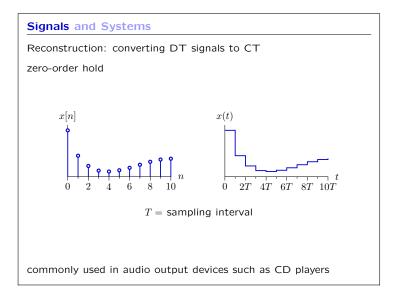

Lecture 1

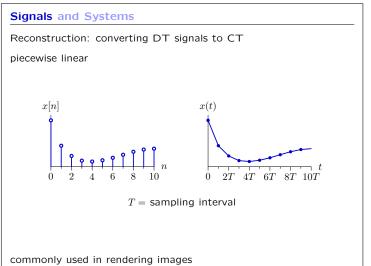


Signals and Systems

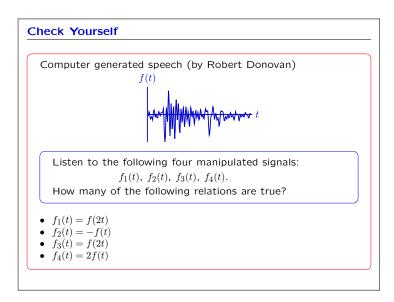
Signals are mathematical functions.

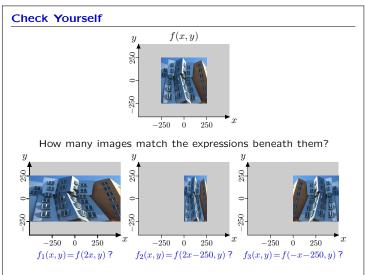

- independent variable = time
- dependent variable = voltage, flow rate, sound pressure

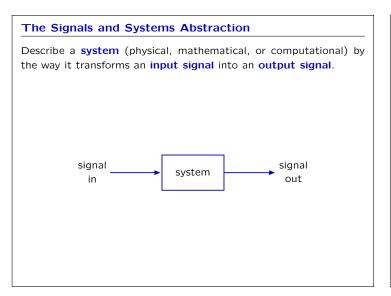

Digital computations are done in discrete time.

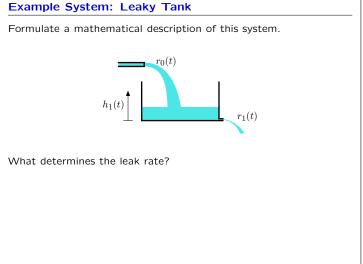

• state machines: given the current input and current state, what is the next output and next state.

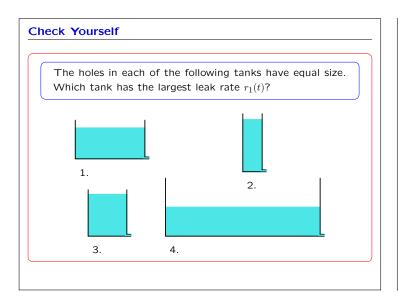
Important for computational manipulation of physical data.

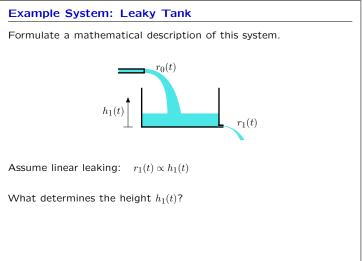

- digital representations of audio signals (e.g., MP3)
- digital representations of pictures (e.g., JPEG)



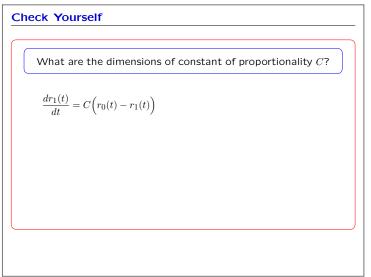


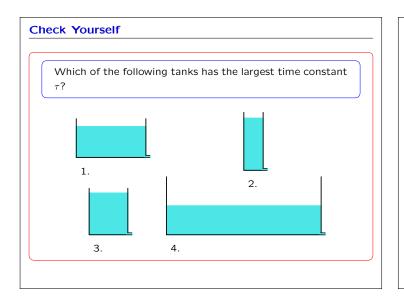

Lecture 1

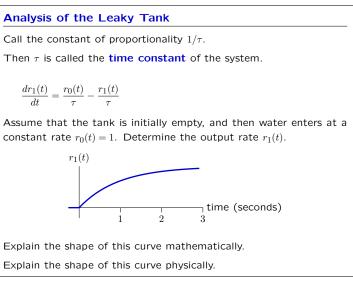

February 2, 2010



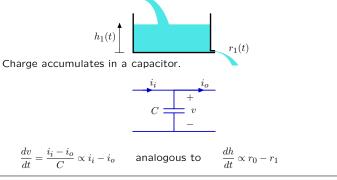








Lecture 1



Leaky Tanks and Capacitors Although derived for a leaky tank, this sort of model can be used to represent a variety of physical systems. Water accumulates in a leaky tank. $r_0(t)$

