6.003: Signals and Systems

Signals and Systems

February 2, 2010

6.003: Signals and Systems

Today's handouts: Single package containing

- Slides for Lecture 1
- Subject Information \& Calendar

Lecturer: Denny Freeman (freeman@mit.edu) Instructors: Peter Hagelstein (phagelstein@aol.com) Rahul Sarpeshkar (rahuls@mit.edu)
TAs: Sefa Demirtas (sefa@mit.edu) Ulric Ferner (uferner@mit.edu) Alison Laferriere (alaferri@mit.edu)

Website: mit.edu/6.003

Text: Signals and Systems - Oppenheim and Willsky

6.003: Homework

Doing the homework is essential for understanding the content.

- where subject matter is/isn't learned
- equivalent to "practice" in sports or music

Weekly Homework Assignments

- Conventional Homework Problems plus
- Engineering Design Problems (Python/Matlab)

Open Office Hours !

- Stata Basement (32-044)
- Mondays and Tuesdays, afternoons and early evenings

6.003: Signals and Systems

Collaboration Policy

- Discussion of concepts in homework is encouraged
- Sharing of homework or code is not permitted and will be reported to the COD

Firm Deadlines

- Homework must be submitted in recitation on due date
- Each student can submit one late homework assignment without penalty.
- Grades on other late assignments will be multiplied by 0.5 (unless excused by an Instructor, Dean, or Medical Official).

6.003 At-A-Glance

	Tuesday	Wednesday		Thursday	
Feb 2	L1: Signals and Systems		R1: Continuous \& Discrete Systems	L2: Discrete-Time Systems	R2: Difference Equations
Feb 9	L3: Feedback, Cycles, and Modes	HW1 due	R3: Feedback, Cycles, and Modes	L4: CT Operator Representations	R4: CT Systems
Feb 16	Presidents Day: Monday Schedule	HW2 due	R5: CT Operator Representations	L5: Second-Order Systems	R6: Second-Order Systems
Feb 23	L6: Laplace and Z Transforms	HW3 due	R7: Laplace and Z Transforms	L7: Transform Properties	R8: Transform Properties
Mar 2	L8: Convolution; Impulse Response	EX4	Exam 1 no recitation	L9: Frequency Response	R9: Convolution and Freq. Resp.
Mar 9	L10: Bode Diagrams	HW5 due	R10: Bode Diagrams	L11: DT Feedback and Control	R11: Feedback and Control
Mar 16	L12: CT Feedback and Control	HW6 due	R12: CT Feedback and Control	L13: CT Feedback and Control	R13: CT Feedback and Control
Mar 23	Spring Week				
Mar 30	L14: CT Fourier Series	HW7	R14: CT Fourier Series	L15: CT Fourier Series	R15: CT Fourier Series
Apr 6	L16: CT Fourier Transform	EX8 due	Exam 2 no recitation	L17: CT Fourier Transform	R16: CT Fourier Transform
Apr 13	L18: DT Fourier Transform	HW9 due	R17: DT Fourier Transform	L19: DT Fourier Transform	R18: DT Fourier Transform
Apr 20	Patriots Day Vacation	HW10	R19: Fourier Transforms	L20: Fourier Relations	R20: Fourier Relations
Apr 27	L21: Sampling	$\begin{gathered} \mathrm{E} \times 11 \\ \text { due } \end{gathered}$	Exam 3 no recitation	L22: Sampling	R21: Sampling
May 4	L23: Modulation	HW12 due	R22: Modulation	L24: Modulation	R23: Modulation
May 11	L25: Applications of 6.003	EX13	R24: Review	Breakfast with Staff	Study Period
May 18	Final Examination Period				

6.003: Signals and Systems

Weekly meetings with class representatives

- help staff understand student perspective
- learn about teaching

One representative from each section (4 total)
Tentatively meet on Thursday afternoon
Interested? ... Send email to freeman@mit.edu

The Signals and Systems Abstraction

Describe a system (physical, mathematical, or computational) by the way it transforms an input signal into an output signal.

Example: Mass and Spring

Example: Mass and Spring

Example: Mass and Spring

Example: Tanks

Example: Tanks

Example: Cell Phone System

Example: Cell Phone System

Signals and Systems: Widely Applicable

The Signals and Systems approach has broad application: electrical, mechanical, optical, acoustic, biological, financial, ...

Signals and Systems: Modular

The representation does not depend upon the physical substrate.
sound in

sound out

focuses on the flow of information, abstracts away everything else

Signals and Systems: Hierarchical

Representations of component systems are easily combined.
Example: cascade of component systems

Composite system

Component and composite systems have the same form, and are analyzed with same methods.

Signals and Systems

Signals are mathematical functions.

- independent variable $=$ time
- dependent variable $=$ voltage, flow rate, sound pressure

Signals and Systems

continuous "time" (CT) and discrete "time" (DT)

Many physical systems operate in continuous time.

- mass and spring
- leaky tank

Digital computations are done in discrete time.

- state machines: given the current input and current state, what is the next output and next state.

Signals and Systems

Sampling: converting CT signals to DT

$T=$ sampling interval

Important for computational manipulation of physical data.

- digital representations of audio signals (e.g., MP3)
- digital representations of pictures (e.g., JPEG)

Signals and Systems

Reconstruction: converting DT signals to CT
zero-order hold

$T=$ sampling interval
commonly used in audio output devices such as CD players

Signals and Systems

Reconstruction: converting DT signals to CT
piecewise linear

$T=$ sampling interval
commonly used in rendering images

Check Yourself

Computer generated speech (by Robert Donovan) $f(t)$

Listen to the following four manipulated signals:

$$
f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)
$$

How many of the following relations are true?

- $f_{1}(t)=f(2 t)$
- $f_{2}(t)=-f(t)$
- $f_{3}(t)=f(2 t)$
- $f_{4}(t)=2 f(t)$

Check Yourself

Computer generated speech (by Robert Donovan)

 $f(t)$

Listen to the following four manipulated signals:

$$
f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)
$$

How many of the following relations are true?

- $f_{1}(t)=f(2 t)$
- $f_{2}(t)=-f(t)$
- $f_{3}(t)=f(2 t)$
- $f_{4}(t)=2 f(t)$

Check Yourself

Computer generated speech (by Robert Donovan) $f(t)$

Listen to the following four manipulated signals:

$$
f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)
$$

How many of the following relations are true?

- $f_{1}(t)=f(2 t)$
- $f_{2}(t)=-f(t)$
- $f_{3}(t)=f(2 t)$
- $f_{4}(t)=2 f(t)$

Check Yourself

Computer generated speech (by Robert Donovan) $f(t)$

Listen to the following four manipulated signals:

$$
f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)
$$

How many of the following relations are true?

- $f_{1}(t)=f(2 t)$
- $f_{2}(t)=-f(t)$
- $f_{3}(t)=f(2 t)$
- $f_{4}(t)=2 f(t)$

Check Yourself

Computer generated speech (by Robert Donovan) $f(t)$

Listen to the following four manipulated signals:

$$
f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)
$$

How many of the following relations are true?

- $f_{1}(t)=f(2 t)$
- $f_{2}(t)=-f(t)$
- $f_{3}(t)=f(2 t)$
- $f_{4}(t)=2 f(t)$

Check Yourself

Computer generated speech (by Robert Donovan) $f(t)$

Listen to the following four manipulated signals:

$$
f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)
$$

How many of the following relations are true?

- $f_{1}(t)=f(2 t)$
- $f_{2}(t)=-f(t)$
- $f_{3}(t)=f(2 t)$
- $f_{4}(t)=2 f(t)$

Check Yourself

Computer generated speech (by Robert Donovan) $f(t)$

Listen to the following four manipulated signals:

$$
f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)
$$

How many of the following relations are true?

- $f_{1}(t)=f(2 t)$
- $f_{2}(t)=-f(t)$
- $f_{3}(t)=f(2 t)$
- $f_{4}(t)=2 f(t)$

Check Yourself

Computer generated speech (by Robert Donovan) $f(t)$

Listen to the following four manipulated signals:

$$
f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)
$$

How many of the following relations are true?

- $f_{1}(t)=f(2 t)$
- $f_{2}(t)=-f(t)$
- $f_{3}(t)=f(2 t)$
- $f_{4}(t)=2 f(t)$

Check Yourself

Computer generated speech (by Robert Donovan) $f(t)$

Listen to the following four manipulated signals:

$$
f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)
$$

How many of the following relations are true? 2

- $f_{1}(t)=f(2 t)$
- $f_{2}(t)=-f(t) \quad \times$
- $f_{3}(t)=f(2 t)$
- $f_{4}(t)=2 f(t)$

Check Yourself

How many images match the expressions beneath them?

Check Yourself

Check Yourself

How many images match the expressions beneath them?

The Signals and Systems Abstraction

Describe a system (physical, mathematical, or computational) by the way it transforms an input signal into an output signal.

Example System: Leaky Tank

Formulate a mathematical description of this system.

What determines the leak rate?

Check Yourself

The holes in each of the following tanks have equal size. Which tank has the largest leak rate $r_{1}(t)$?

1.

3.

2.
4.

Check Yourself

The holes in each of the following tanks have equal size. Which tank has the largest leak rate $r_{1}(t)$? 2

1.

3.

2.
4.

Example System: Leaky Tank

Formulate a mathematical description of this system.

Assume linear leaking: $\quad r_{1}(t) \propto h_{1}(t)$

What determines the height $h_{1}(t)$?

Example System: Leaky Tank

Formulate a mathematical description of this system.

Assume linear leaking:

$$
r_{1}(t) \propto h_{1}(t)
$$

Assume water is conserved: $\quad \frac{d h_{1}(t)}{d t} \propto r_{0}(t)-r_{1}(t)$

Solve:

$$
\frac{d r_{1}(t)}{d t} \propto r_{0}(t)-r_{1}(t)
$$

Check Yourself

What are the dimensions of constant of proportionality C ?

$$
\frac{d r_{1}(t)}{d t}=C\left(r_{0}(t)-r_{1}(t)\right)
$$

Check Yourself

What are the dimensions of constant of proportionality C ? inverse time (to match dimensions of $d t$)

$$
\frac{d r_{1}(t)}{d t}=C\left(r_{0}(t)-r_{1}(t)\right)
$$

Analysis of the Leaky Tank

Call the constant of proportionality $1 / \tau$.

Then τ is called the time constant of the system.

$$
\frac{d r_{1}(t)}{d t}=\frac{r_{0}(t)}{\tau}-\frac{r_{1}(t)}{\tau}
$$

Check Yourself

Which of the following tanks has the largest time constant τ ?

1.

3.

2.
4.

Check Yourself

Which of the following tanks has the largest time constant τ ? 4

1.

3.

2.

Analysis of the Leaky Tank

Call the constant of proportionality $1 / \tau$.
Then τ is called the time constant of the system.

$$
\frac{d r_{1}(t)}{d t}=\frac{r_{0}(t)}{\tau}-\frac{r_{1}(t)}{\tau}
$$

Assume that the tank is initially empty, and then water enters at a constant rate $r_{0}(t)=1$. Determine the output rate $r_{1}(t)$.

Explain the shape of this curve mathematically.
Explain the shape of this curve physically.

Leaky Tanks and Capacitors

Although derived for a leaky tank, this sort of model can be used to represent a variety of physical systems.

Water accumulates in a leaky tank.

Charge accumulates in a capacitor.

$$
\frac{d v}{d t}=\frac{i_{i}-i_{o}}{C} \propto i_{i}-i_{o} \quad \text { analogous to } \quad \frac{d h}{d t} \propto r_{0}-r_{1}
$$

