# 6.003: Signals and Systems

**Signals and Systems** 

# 6.003: Signals and Systems

Today's handouts: Single package containing

- Slides for Lecture 1
- Subject Information & Calendar

Lecturer: Denny Freeman (freeman@mit.edu)

Instructors: Peter Hagelstein (phagelstein@aol.com)
Rahul Sarpeshkar (rahuls@mit.edu)

TAs: Sefa Demirtas (sefa@mit.edu)

Ulric Ferner (uferner@mit.edu)

Alison Laferriere (alaferri@mit.edu)

Website: mit.edu/6.003

Text: Signals and Systems – Oppenheim and Willsky

#### 6.003: Homework

Doing the homework is essential for understanding the content.

- where subject matter is/isn't learned
- equivalent to "practice" in sports or music

#### Weekly Homework Assignments

- Conventional Homework Problems plus
- Engineering Design Problems (Python/Matlab)

#### Open Office Hours!

- Stata Basement (32-044)
- Mondays and Tuesdays, afternoons and early evenings

# 6.003: Signals and Systems

#### Collaboration Policy

- Discussion of concepts in homework is encouraged
- Sharing of homework or code is not permitted and will be reported to the COD

#### Firm Deadlines

- Homework must be submitted in recitation on due date
- Each student can submit one late homework assignment without penalty.
- Grades on other late assignments will be multiplied by 0.5 (unless excused by an Instructor, Dean, or Medical Official).

# 6.003 At-A-Glance

|        | Tuesday                    | Wedne       | esday             | Thursday                | Friday            |
|--------|----------------------------|-------------|-------------------|-------------------------|-------------------|
| Feb 2  | L1: Signals and            |             | R1: Continuous &  | L2: Discrete-Time       | R2: Difference    |
|        | Systems                    |             | Discrete Systems  | Systems                 | Equations         |
| Feb 9  | L3: Feedback,              | HW1         | R3: Feedback,     | L4: CT Operator         | R4: CT Systems    |
|        | Cycles, and Modes          | due         | Cycles, and Modes | Representations         |                   |
| Feb 16 | Presidents Day:            | HW2         | R5: CT Operator   | L5: Second-Order        | R6: Second-Order  |
|        | Monday Schedule            | due         | Representations   | Systems                 | Systems           |
| Feb 23 | L6: Laplace and Z          | HW3         | R7: Laplace and Z | L7: Transform           | R8: Transform     |
|        | Transforms                 | due         | Transforms        | Properties              | Properties        |
| Mar 2  | L8: Convolution;           | EX4         | Exam 1            | L9: Frequency           | R9: Convolution   |
|        | Impulse Response           |             | no recitation     | Response                | and Freq. Resp.   |
| Mar 9  | L10: Bode                  | HW5         | R10: Bode         | L11: DT Feedback        | R11: Feedback and |
|        | Diagrams                   | due         | Diagrams          | and Control             | Control           |
| Mar 16 | L12: CT Feedback           | HW6         | R12: CT Feedback  | L13: CT Feedback        | R13: CT Feedback  |
|        | and Control                | due         | and Control       | and Control             | and Control       |
| Mar 23 |                            |             | Spring Week       |                         |                   |
| Mar 30 | L14: CT Fourier            | HW7         | R14: CT Fourier   | L15: CT Fourier         | R15: CT Fourier   |
|        | Series                     |             | Series            | Series                  | Series            |
| Apr 6  | L16: CT Fourier            | EX8         | Exam 2            | L17: CT Fourier         | R16: CT Fourier   |
|        | Transform                  | due         | no recitation     | Transform               | Transform         |
| Apr 13 | L18: DT Fourier            | HW9         | R17: DT Fourier   | L19: DT Fourier         | R18: DT Fourier   |
|        | Transform                  | due         | Transform         | Transform               | Transform         |
| Apr 20 | Patriots Day               | HW10        | R19: Fourier      | L20: Fourier            | R20: Fourier      |
|        | Vacation                   |             | Transforms        | Relations               | Relations         |
| Apr 27 | L21: Sampling              | EX11        | Exam 3            | L22: Sampling           | R21: Sampling     |
|        |                            | due         | no recitation     |                         |                   |
| May 4  | L23: Modulation            | HW12<br>due | R22: Modulation   | L24: Modulation         | R23: Modulation   |
| May 11 | L25: Applications of 6.003 | EX13        | R24: Review       | Breakfast with<br>Staff | Study Period      |
| May 18 | Final Examination Period   |             |                   |                         |                   |

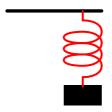
# 6.003: Signals and Systems

Weekly meetings with class representatives

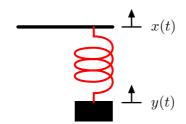
- help staff understand student perspective
- learn about teaching

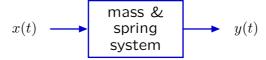
One representative from each section (4 total)

Tentatively meet on Thursday afternoon

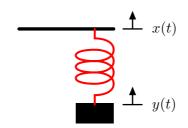

Interested? ... Send email to freeman@mit.edu

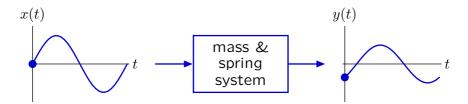
# The Signals and Systems Abstraction


Describe a **system** (physical, mathematical, or computational) by the way it transforms an **input signal** into an **output signal**.

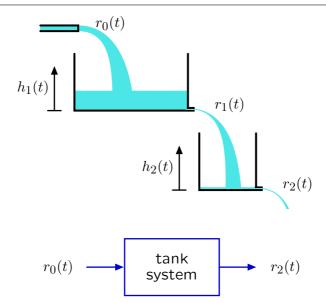



# **Example: Mass and Spring**

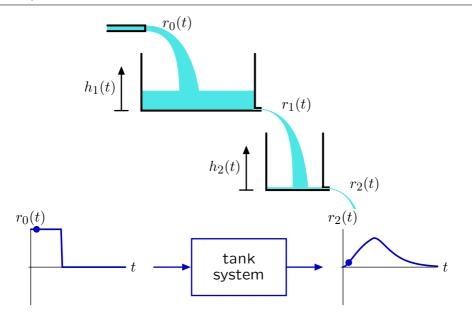




# **Example: Mass and Spring**



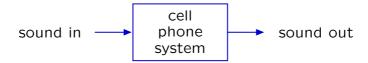



# **Example: Mass and Spring**

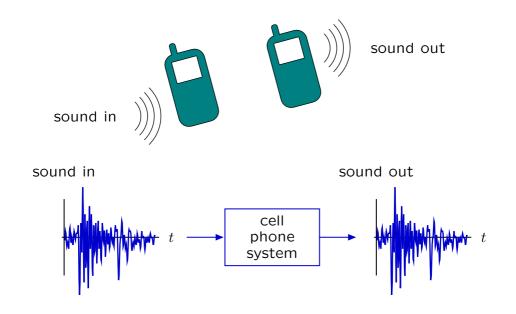





# **Example: Tanks**

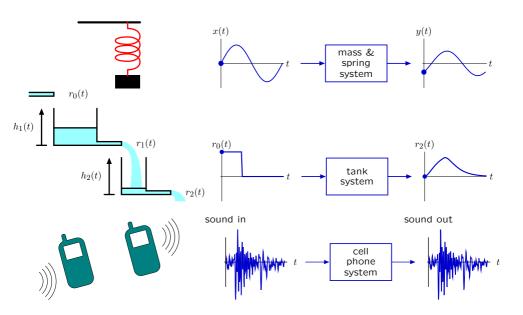



# **Example: Tanks**



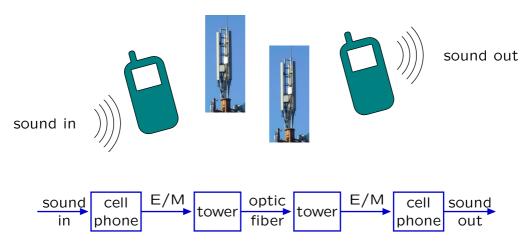

# **Example: Cell Phone System**






# **Example: Cell Phone System**



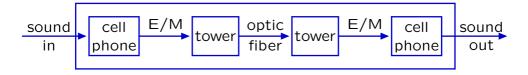

# Signals and Systems: Widely Applicable

The Signals and Systems approach has broad application: electrical, mechanical, optical, acoustic, biological, financial, ...



# Signals and Systems: Modular

The representation does not depend upon the physical substrate.



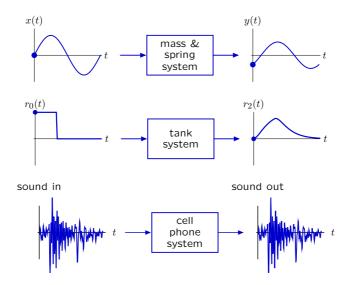

focuses on the flow of information, abstracts away everything else

# Signals and Systems: Hierarchical

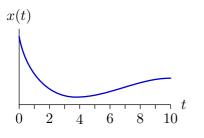
Representations of component systems are easily combined.

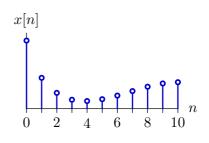
Example: cascade of component systems




Composite system




Component and composite systems have the same form, and are analyzed with same methods.


Signals are mathematical functions.

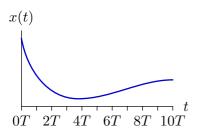
- independent variable = time
- dependent variable = voltage, flow rate, sound pressure

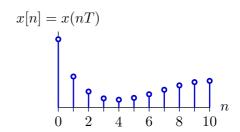


continuous "time" (CT) and discrete "time" (DT)






Many physical systems operate in continuous time.


- mass and spring
- leaky tank

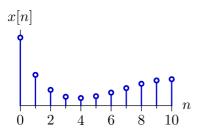
Digital computations are done in discrete time.

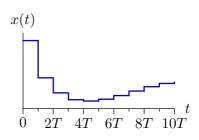
• state machines: given the current input and current state, what is the next output and next state.

Sampling: converting CT signals to DT






T =sampling interval

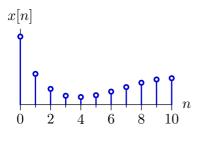

Important for computational manipulation of physical data.

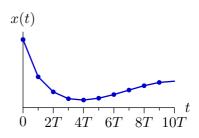
- digital representations of audio signals (e.g., MP3)
- digital representations of pictures (e.g., JPEG)

Reconstruction: converting DT signals to CT

zero-order hold



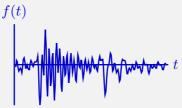




T =sampling interval

commonly used in audio output devices such as CD players

Reconstruction: converting DT signals to CT

piecewise linear

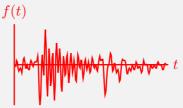





T =sampling interval

commonly used in rendering images

Computer generated speech (by Robert Donovan)

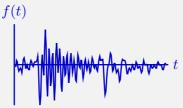



Listen to the following four manipulated signals:

$$f_1(t)$$
,  $f_2(t)$ ,  $f_3(t)$ ,  $f_4(t)$ .

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

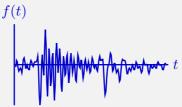



Listen to the following four manipulated signals:

$$f_1(t)$$
,  $f_2(t)$ ,  $f_3(t)$ ,  $f_4(t)$ .

- $f_1(t) = f(2t)$
- $f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

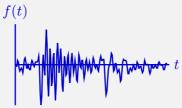



Listen to the following four manipulated signals:

$$f_1(t)$$
,  $f_2(t)$ ,  $f_3(t)$ ,  $f_4(t)$ .

- $f_1(t) = f(2t)$
- $f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

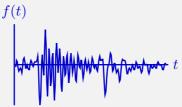



Listen to the following four manipulated signals:

$$f_1(t)$$
,  $f_2(t)$ ,  $f_3(t)$ ,  $f_4(t)$ .

- $f_1(t) = f(2t)$
- $f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

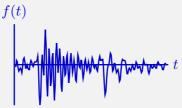



Listen to the following four manipulated signals:

$$f_1(t)$$
,  $f_2(t)$ ,  $f_3(t)$ ,  $f_4(t)$ .

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

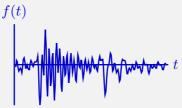



Listen to the following four manipulated signals:

$$f_1(t)$$
,  $f_2(t)$ ,  $f_3(t)$ ,  $f_4(t)$ .

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

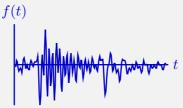



Listen to the following four manipulated signals:

$$f_1(t)$$
,  $f_2(t)$ ,  $f_3(t)$ ,  $f_4(t)$ .

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

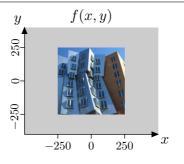
Computer generated speech (by Robert Donovan)



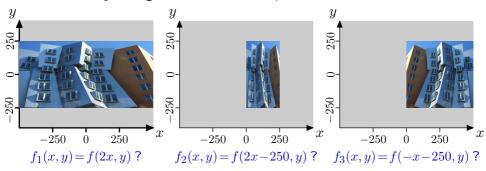

Listen to the following four manipulated signals:

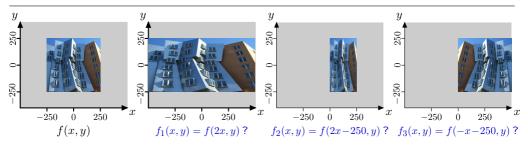
$$f_1(t)$$
,  $f_2(t)$ ,  $f_3(t)$ ,  $f_4(t)$ .

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

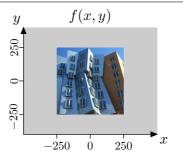

Computer generated speech (by Robert Donovan)



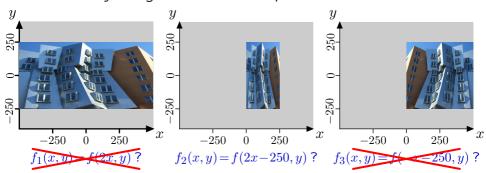

Listen to the following four manipulated signals:


$$f_1(t)$$
,  $f_2(t)$ ,  $f_3(t)$ ,  $f_4(t)$ .

- $f_4(t) = 2f(t)$




How many images match the expressions beneath them?



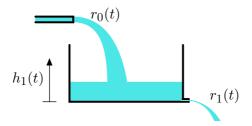



$$x = 0$$
  $\rightarrow f_1(0, y) = f(0, y)$   $\checkmark$   
 $x = 250$   $\rightarrow f_1(250, y) = f(500, y)$   $\times$   
 $x = 0$   $\rightarrow f_2(0, y) = f(-250, y)$   $\checkmark$   
 $x = 250$   $\rightarrow f_2(250, y) = f(250, y)$   $\checkmark$   
 $x = 0$   $\rightarrow f_3(0, y) = f(-250, y)$   $\times$   
 $x = 250$   $\rightarrow f_3(250, y) = f(-500, y)$   $\times$ 

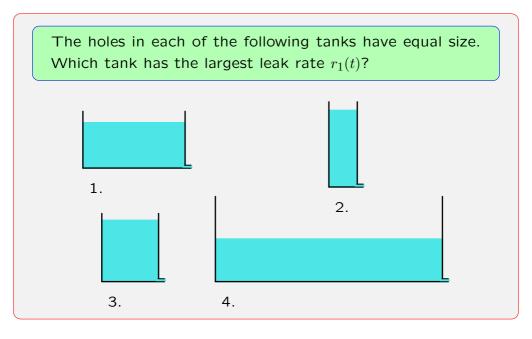


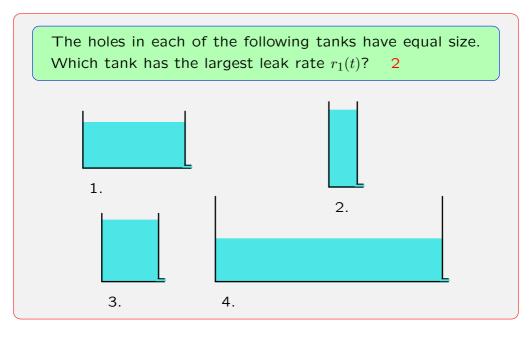
How many images match the expressions beneath them?




# The Signals and Systems Abstraction

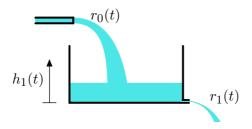
Describe a **system** (physical, mathematical, or computational) by the way it transforms an **input signal** into an **output signal**.





# **Example System: Leaky Tank**

Formulate a mathematical description of this system.



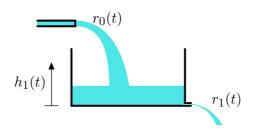

What determines the leak rate?





# **Example System: Leaky Tank**

Formulate a mathematical description of this system.




Assume linear leaking:  $r_1(t) \propto h_1(t)$ 

What determines the height  $h_1(t)$ ?

# **Example System: Leaky Tank**

Formulate a mathematical description of this system.



Assume linear leaking: 
$$r_1(t) \propto h_1(t)$$

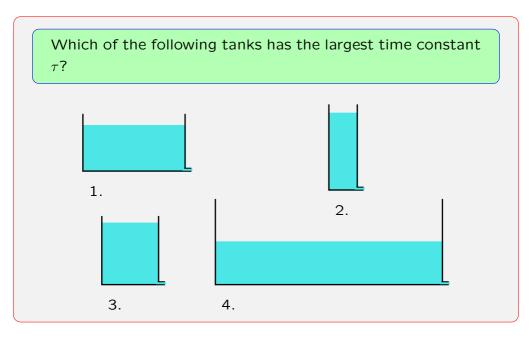
Assume water is conserved: 
$$\frac{dh_1(t)}{dt} \propto r_0(t) - r_1(t)$$

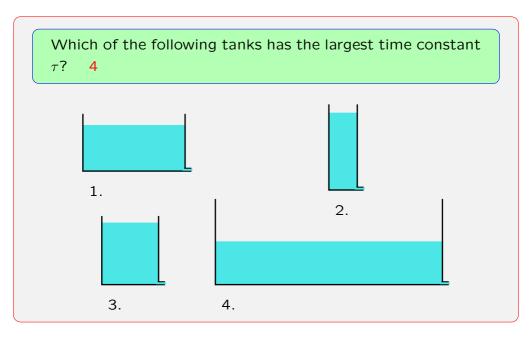
Solve: 
$$\frac{dr_1(t)}{dt} \propto r_0(t) - r_1(t)$$

What are the dimensions of constant of proportionality  ${\cal C}$ ?

$$\frac{dr_1(t)}{dt} = C\Big(r_0(t) - r_1(t)\Big)$$

What are the dimensions of constant of proportionality C? inverse time (to match dimensions of dt)


$$\frac{dr_1(t)}{dt} = C\Big(r_0(t) - r_1(t)\Big)$$


# **Analysis** of the Leaky Tank

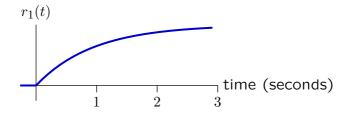
Call the constant of proportionality  $1/\tau$ .

Then  $\tau$  is called the **time constant** of the system.

$$\frac{dr_1(t)}{dt} = \frac{r_0(t)}{\tau} - \frac{r_1(t)}{\tau}$$






# **Analysis of the Leaky Tank**

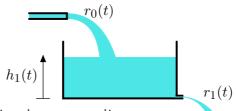
Call the constant of proportionality  $1/\tau$ .

Then  $\tau$  is called the **time constant** of the system.

$$\frac{dr_1(t)}{dt} = \frac{r_0(t)}{\tau} - \frac{r_1(t)}{\tau}$$

Assume that the tank is initially empty, and then water enters at a constant rate  $r_0(t)=1$ . Determine the output rate  $r_1(t)$ .




Explain the shape of this curve mathematically.

Explain the shape of this curve physically.

# **Leaky Tanks and Capacitors**

Although derived for a leaky tank, this sort of model can be used to represent a variety of physical systems.

Water accumulates in a leaky tank.



Charge accumulates in a capacitor.

$$\begin{array}{c|c}
 & i_0 \\
 & + \\
 & v \\
 & - \\
\end{array}$$

$$rac{dv}{dt} = rac{i_i - i_o}{C} \propto i_i - i_o$$
 analogous to  $rac{dh}{dt} \propto r_0 - r$