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Last Time: Multiple Representations of DT Systems

Verbal descriptions: preserve the rationale.

“To reduce the number of bits needed to store a sequence of
large numbers that are nearly equal, record the first number,
and then record successive differences.”

Difference equations: mathematically compact.
y[n] = z[n] — z[n —1]

Block diagrams: illustrate signal flow paths.
a[n] »(D—> yln]

Operator representations: analyze systems as polynomials.

Y=(1-R)X

Last Time: Feedback, Cyclic Signal Paths, and Modes

Last Time: Feedback, Cyclic Signal Paths, and Modes

Systems with signals that depend on previous values of the same
signal are said to have feedback.

Example: The accumulator system has feedback.
X 4’@j—’ Y

By contrast, the difference machine does not have feedback.

x oD v

The effect of feedback can be visualized by tracing each cycle
through the cyclic signal paths.

R an %

z[n] = é[n] y[n]
>
n o n
-101 2 3 4 -10 12 3 4

Each cycle creates another sample in the output.

The response will persist even though the input is transient.

Geometric Growth: Poles

Check Yourself

These unit-sample responses can be characterized by a single number
— the pole — which is the base of the geometric sequence.

X —(+ > Y
<)
[n] pg, ifn>=0;
nl =
Y 0, otherwise.

y[n] yln] y[n]
s Al
~10 1234 ~10 1234 01234

po = 0.5

How many of the following unit-sample responses can be
represented by a single pole?
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Geometric Growth

Second-Order Systems

The value of py determines the rate of growth.

AL oo T L
[] T

w

-1 0 1
po < —1: magnitude diverges, alternating sign
—1 <pg <0: magnitude converges, alternating sign
0 <pp<1l: magnitude converges monotonically
po > 1:  magnitude diverges monotonically

The unit-sample responses of more complicated cyclic systems are
more complicated.

Not geometric. This response grows then decays.

Factoring Second-Order Systems

Factoring Second-Order Systems

Factor the operator expression to break the system into two simpler
systems (divide and conquer).

Y = X + 1.6RY — 0.63R%Y
(1-1.6R+0.63R?)Y = X
(1-07R)(1-09R)Y = X

The factored form corresponds to a cascade of simpler systems.

(1-07R)(1-09R)Y =X

“J v

(1-0.7R) Y5

(I-09R)Y =Y>

J o

(1-09R)Y; =

(1-07R)Y =Y

The order doesn’t matter (if systems are initially at rest).

Factoring Second-Order Systems

Multiplying Polynomial

The unit-sample response of the cascaded system can be found by
multiplying the polynomial representations of the subsystems.

Yy 1 ! 1
X 0-07R)1-00R)  (1-07R) " (1—09R)

=(1+07R+07PR2+0.7R3+ - ) x (1+09R +0.9°R% +0.9°R3 + .-
Multiply, then collect terms of equal order:

Y -
T =1+ 0T H09R + (0.72 4 0.7 x 0.9 + 0.9%)R?
+ (0734072 x09+0.7 x 0.9 +0.9% )R> +

Graphical representation of polynomial multiplication.
Y o ¢ o
x= (14 aR +a’R? +a®R3 +

<) x (14 bR+ b*R?

TR+

Collect terms of equal order:

Y oo > a .
— =14 (a+ bR+ (a®+ab+b*)R? + (a® + a®b + ab® + )R> +

X
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Multiplying Polynomials

Partial Fractions

Tabular representation of polynomial multiplication.
(1+aR+a®R?2+a3R% + ) x (1 + R+ W*R2+ B3R3 +-..)
1 bR b*R? PR3
1 1 bR b?R? bR3
aR  aR abR?  ab*R3® abPR*
a?R? a?R? 2R3 a2PRY A2PR5
aSR3 aSR3 @3WRY @BVPRY PIRE

Group same powers of R by following reverse diagonals:

Z:1+(a+b)72+(¢12+ab+b2)722+(<13+a?b+ab2+b3)723+~--

* y[nl
T n
8

g

-10

Use partial fractions to rewrite as a sum of simpler parts.

X =) Y

Y 1 _ 1 _ 45 35
X 1-16R+063R?2  (1-09R)(1-07R) 1-09R 1-0.7R

Second-Order Systems: Equivalent Forms

Partial Fractions

The sum of simpler parts suggests a parallel implementation.

>

Y 45 3.5
X 1-09R 1-07R

If z[n] = §[n] then yi[n] =0.9" and ys[n] = 0.7" for n > 0.
Thus, y[n] = 4.5(0.9)" — 3.5(0.7)" for n > 0.

Graphical representation of the sum of geometric sequences.

Partial Fractions

Poles

Partial fractions provides a remarkable equivalence.

— follows from thinking about system as polynomial (factoring).

The key to simplifying a higher-order system is identifying its poles.

Poles are the roots of the denominator of the system functional
when R — 1.

Start with system functional:
Y 1 1 B 1

X T 1-16R+063R?2  (I-poR)(1-pR)  (1-0.7R) (1—0.9R)
N—_——

N ——
po=0.7 p1=0.9

1
Substitute R — — and find roots of denominator:
z

X - 1 -~ 22 -~ 22
X 16 0637321624063  (2-0.7) (:-0.9)
222 AR v e
20=0.7 2z1=0.9

The poles are at 0.7 and 0.9.
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Check Yourself Population Growth

s N
Consider the system described by

yln] = *%y[n -1+ %y[n =2 +zh-1]- %-ﬂ[n -2

)

How many of the following are true? }

1. The unit sample response converges to zero.
2. There are poles at =4 and z = 1.
3. Thereis a pole at z = 3.
4. There are two poles. &%&
5. None of the above
Population Growth Population Growth
Population Growth Population Growth

arfs

At at at Al
& =

arfh




6.003: Signals and Systems

Lecture 3 February 9, 2010

Check Yourself

Example: Fibonacci’s Bunnies

What are the pole(s) of the Fibonacci system?

1

1 and -1

—1 and -2

1.618... and —0.618...
none of the above

o s wn =

The unit-sample response of the Fibonacci system can be written
as a weighted sum of fundamental modes.

KB 1
g Y _ 1 __\5 /5
X 1-R-R?2 1-¢R 1+%R
¢ T 1 —n
hn] = —=¢" + — ; n>0
[n] \/5<z> ¢ﬁ( ?)

But we already know that h[n] is the Fibonacci sequence f:

f:1,1,2,3,5,8,13,21, 34,55, 89, ...

Therefore we can calculate f[n] without knowing f[n —1] or f[n—2]!

Complex Poles

Complex Poles

What if a pole has a non-zero imaginary part?

Example:
Yy 1
X 1-R+R2
- 1 . 22
= 1., 1 2
175+;72 z¢—z+1

Poles are z = £ @j — tin/3,

What are the implications of complex poles?

Partial fractions work even when the poles are complex.

e—im/3
1—edm™BR 11— e in3R

Y 1 y 1 1 eJT/3
X 1-ei™BR T 1-—e PR jV3

There are two fundamental modes (both geometric sequences):

ednm/3 = cos(nm/3)+ jsin(n7/3) and emInT/3 = cos(nm/3) — jsin(nn/3)

Complex Poles

Complex Poles

Complex modes are easier to visualize in the complex plane.

eIn/3 = cos(nm/3) + j sin(nm/3)

3 Im edlm/3

j3m7/3 \\( 707/3
‘ Re

n

n

The output of a “real” system has real values.

yln] = z[n] + y[n — 1] —yln - 2|
Y 1
H= —=_ —
X 1-R+R2
1 1

T 1ot AR C1-einhR

1 cin/3 o—im/3
T VB \1_edtBR 1 _eiBR
Bn] = -1 (ej(n+1)7r/3 N 8—]‘<n+1>w/3) _2 gt m

Jv3 V3 3
h[n|

1
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Check Yourself

Check Yourself

Unit-sample response of a system with poles at z =re

+jQ

¥~ {E v

[ How many of the following statements are true? J
1. This system has 3 fundamental modes.
2. All of the fi | i ics.
Which of the following is/are true? of the fundamental modes can be written as geometrics
1. r<05and Q~05 3. Unit-sample response is y[n] : 0,0,0,1,0,0,1,0,0,1,0,0,1...
2. 05<r<1and Q~05 4. Unit-sample response is y[n] : 1,0,0,1,0,0,1,0,0,1,0,0,1...
3. r<0.5 and Q~=0.08 5. One of the fundamental modes of this system is the unit
4. 05<r<1andQ~0.08 step.
5. none of the above
Summary

Systems composed of adders, gains, and delays can be characterized

by their poles.

The poles of a system determine its fundamental modes.

The unit-sample response of a system can be expressed as a weighted

sum of fundamental modes.

These properties follow from a polynomial interpretation of the sys-

tem functional.




