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Last Time: Multiple Representations of DT Systems

Verbal descriptions: preserve the rationale.

“To reduce the number of bits needed to store a sequence of

large numbers that are nearly equal, record the first number,

and then record successive differences.”

Difference equations: mathematically compact.

y[n] = x[n]− x[n− 1]

Block diagrams: illustrate signal flow paths.

−1 Delay

+x[n] y[n]

Operator representations: analyze systems as polynomials.

Y = (1−R)X



Last Time: Feedback, Cyclic Signal Paths, and Modes

Systems with signals that depend on previous values of the same

signal are said to have feedback.

Example: The accumulator system has feedback.

Delay

+X Y

By contrast, the difference machine does not have feedback.

−1 Delay

+X Y



Last Time: Feedback, Cyclic Signal Paths, and Modes

The effect of feedback can be visualized by tracing each cycle

through the cyclic signal paths.

Delay

+

p0

X Y

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Each cycle creates another sample in the output.
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Last Time: Feedback, Cyclic Signal Paths, and Modes

The effect of feedback can be visualized by tracing each cycle

through the cyclic signal paths.

Delay

+

p0

X Y

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Each cycle creates another sample in the output.

The response will persist even though the input is transient.



Geometric Growth: Poles

These unit-sample responses can be characterized by a single number

— the pole — which is the base of the geometric sequence.

Delay

+

p0

X Y

y[n] =
{
pn0 , if n >= 0;
0, otherwise.

−1 0 1 2 3 4
n

y[n]

−1 0 1 2 3 4
n

y[n]

−1 0 1 2 3 4
n

y[n]

p0 = 0.5 p0 = 1 p0 = 1.2



Check Yourself

How many of the following unit-sample responses can be

represented by a single pole?

n n

n n

n



Check Yourself

How many of the following unit-sample responses can be

represented by a single pole? 3

n n

n n

n



Geometric Growth

The value of p0 determines the rate of growth.

y[n] y[n] y[n] y[n]

−1 0 1
z

p0 < −1: magnitude diverges, alternating sign

−1 < p0 < 0: magnitude converges, alternating sign

0 < p0 < 1: magnitude converges monotonically

p0 > 1: magnitude diverges monotonically



Second-Order Systems

The unit-sample responses of more complicated cyclic systems are

more complicated.

R

R

1.6

−0.63

+X Y

−1 0 1 2 3 4 5 6 7 8
n

y[n]

Not geometric. This response grows then decays.



Factoring Second-Order Systems

Factor the operator expression to break the system into two simpler

systems (divide and conquer).

R

R

1.6

−0.63

+X Y

Y = X + 1.6RY − 0.63R2Y

(1− 1.6R+ 0.63R2)Y = X

(1− 0.7R)(1− 0.9R)Y = X



Factoring Second-Order Systems

The factored form corresponds to a cascade of simpler systems.

(1− 0.7R)(1− 0.9R)Y = X

+

0.7 R

+

0.9 R

X Y
Y2

(1− 0.7R)Y2 = X (1− 0.9R)Y = Y2

+

0.9 R

+

0.7 R

X Y
Y1

(1− 0.9R)Y1 = X (1− 0.7R)Y = Y1

The order doesn’t matter (if systems are initially at rest).



Factoring Second-Order Systems

The unit-sample response of the cascaded system can be found by

multiplying the polynomial representations of the subsystems.

Y

X
= 1

(1− 0.7R)(1− 0.9R)
= 1

(1− 0.7R)︸ ︷︷ ︸×
1

(1− 0.9R)︸ ︷︷ ︸
=
︷ ︸︸ ︷
(1 + 0.7R+ 0.72R2 + 0.73R3 + · · ·)×

︷ ︸︸ ︷
(1 + 0.9R+ 0.92R2 + 0.93R3 + · · ·)

Multiply, then collect terms of equal order:

Y

X
= 1 + (0.7 + 0.9)R+ (0.72 + 0.7 × 0.9 + 0.92)R2

+ (0.73 + 0.72 × 0.9 + 0.7 × 0.92 + 0.93)R3 + · · ·



Multiplying Polynomial

Graphical representation of polynomial multiplication.
Y

X
= (1 + aR+ a2R2 + a3R3 + · · ·)× (1 + bR+ b2R2 + b3R3 + · · ·)

1

a R

a2 R2

a3 R3

+

1

b R

b2 R2

b3 R3

+

... ... ... ...

X Y

Collect terms of equal order:
Y

X
= 1 + (a+ b)R+ (a2 + ab+ b2)R2 + (a3 + a2b+ ab2 + b3)R3 + · · ·



Multiplying Polynomials

Tabular representation of polynomial multiplication.

(1 + aR+ a2R2 + a3R3 + · · ·)× (1 + bR+ b2R2 + b3R3 + · · ·)

1 bR b2R2 b3R3 · · ·

1 1 bR b2R2 b3R3 · · ·
aR aR abR2 ab2R3 ab3R4 · · ·
a2R2 a2R2 a2bR3 a2b2R4 a2b3R5 · · ·
a3R3 a3R3 a3bR4 a3b2R5 a3b3R6 · · ·
· · · · · · · · · · · · · · · · · ·

Group same powers of R by following reverse diagonals:
Y

X
= 1 + (a+ b)R+ (a2 + ab+ b2)R2 + (a3 + a2b+ ab2 + b3)R3 + · · ·

−1 0 1 2 3 4 5 6 7 8
n

y[n]



Partial Fractions

Use partial fractions to rewrite as a sum of simpler parts.

R

R

1.6

−0.63

+X Y

Y

X
= 1

1− 1.6R+ 0.63R2 = 1
(1− 0.9R)(1− 0.7R)

= 4.5
1− 0.9R

− 3.5
1− 0.7R



Second-Order Systems: Equivalent Forms

The sum of simpler parts suggests a parallel implementation.

Y

X
= 4.5

1− 0.9R
− 3.5

1− 0.7R

+

0.9 R

4.5 +

−3.5

R0.7

+

X Y
Y1

Y2

If x[n] = δ[n] then y1[n] = 0.9n and y2[n] = 0.7n for n ≥ 0.

Thus, y[n] = 4.5(0.9)n − 3.5(0.7)n for n ≥ 0.



Partial Fractions

Graphical representation of the sum of geometric sequences.

−1 0 1 2 3 4 5 6 7 8
n

y1[n] = 0.9n for n ≥ 0

−1 0 1 2 3 4 5 6 7 8
n

y2[n] = 0.7n for n ≥ 0

−1 0 1 2 3 4 5 6 7 8
n

y[n] = 4.5(0.9)n − 3.5(0.7)n
for n ≥ 0



Partial Fractions

Partial fractions provides a remarkable equivalence.

R

R

1.6

−0.63

+X Y

+

0.9 R

4.5 +

−3.5

R0.7

+

X Y
Y1

Y2

→ follows from thinking about system as polynomial (factoring).



Poles

The key to simplifying a higher-order system is identifying its poles.

Poles are the roots of the denominator of the system functional

when R → 1
z .

Start with system functional:
Y

X
= 1

1− 1.6R+0.63R2 = 1
(1−p0R)(1−p1R)

= 1
(1−0.7R)︸ ︷︷ ︸
p0=0.7

(1−0.9R)︸ ︷︷ ︸
p1=0.9

Substitute R → 1
z

and find roots of denominator:

Y

X
= 1

1− 1.6
z

+0.63
z2

= z2

z2−1.6z+0.63
= z2

(z−0.7)︸ ︷︷ ︸
z0=0.7

(z−0.9)︸ ︷︷ ︸
z1=0.9

The poles are at 0.7 and 0.9.



Check Yourself

Consider the system described by

y[n] = −1
4
y[n− 1] + 1

8
y[n− 2] + x[n− 1]− 1

2
x[n− 2]

How many of the following are true?

1. The unit sample response converges to zero.

2. There are poles at z = 1
2 and z = 1

4 .

3. There is a pole at z = 1
2 .

4. There are two poles.

5. None of the above



Check Yourself

y[n] = −1
4
y[n− 1] + 1

8
y[n− 2] + x[n− 1]− 1

2
x[n− 2]

(1 + 1
4
R− 1

8
R2)Y = (R− 1

2
R2)X

H(R) = Y
X

=
R− 1

2R
2

1 + 1
4R−

1
8R2 =

1
z −

1
2

1
z2

1 + 1
4

1
z −

1
8

1
z2

=
z − 1

2
z2 + 1

4z −
1
8

=
z − 1

2(
z + 1

2
)(
z − 1

4
)

1. The unit sample response converges to zero.
√

2. There are poles at z = 1
2 and z = 1

4 . X

3. There is a pole at z = 1
2 . X

4. There are two poles.
√

5. None of the above X



Check Yourself

Consider the system described by

y[n] = −1
4
y[n− 1] + 1

8
y[n− 2] + x[n− 1]− 1

2
x[n− 2]

How many of the following are true? 2

1. The unit sample response converges to zero.

2. There are poles at z = 1
2 and z = 1

4 .

3. There is a pole at z = 1
2 .

4. There are two poles.

5. None of the above
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Population Growth



Population Growth



Population Growth



Population Growth



Population Growth



Check Yourself

What are the pole(s) of the Fibonacci system?

1. 1
2. 1 and −1
3. −1 and −2
4. 1.618 . . . and −0.618 . . .
5. none of the above



Check Yourself

What are the pole(s) of the Fibonacci system?

Difference equation for Fibonacci system:

y[n] = x[n] + y[n− 1] + y[n− 2]

System functional:

H = Y
X

= 1
1−R−R2

Denominator is second order → 2 poles.



Check Yourself

Find the poles by substituting R → 1/z in system functional.

H = Y
X

= 1
1−R−R2 →

1
1− 1
z −

1
z2

= z2

z2 − z − 1

Poles are at

z = 1±
√

5
2

= φ,− 1
φ

where φ represents the “golden ratio”

φ = 1 +
√

5
2
≈ 1.618

The two poles are at

z0 = φ ≈ 1.618 and z1 = − 1
φ
≈ −0.618



Check Yourself

What are the pole(s) of the Fibonacci system? 4

1. 1
2. 1 and −1
3. −1 and −2
4. 1.618 . . . and −0.618 . . .
5. none of the above



Example: Fibonacci’s Bunnies

Each pole corresponds to a fundamental mode.

φ ≈ 1.618 and − 1
φ
≈ −0.618

−1 0 1 2 3 4
n

φn

−1 0 1 2 3 4
n

(
− 1
φ

)n

One mode diverges, one mode oscillates!



Example: Fibonacci’s Bunnies

The unit-sample response of the Fibonacci system can be written

as a weighted sum of fundamental modes.

H = Y
X

= 1
1−R−R2 =

φ√
5

1− φR
+

1
φ
√

5
1 + 1
φR

h[n] = φ√
5
φn + 1

φ
√

5
(−φ)−n ; n ≥ 0

But we already know that h[n] is the Fibonacci sequence f :

f : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Therefore we can calculate f [n] without knowing f [n− 1] or f [n− 2] !



Complex Poles

What if a pole has a non-zero imaginary part?

Example:
Y

X
= 1

1−R+R2

= 1
1− 1
z + 1

z2
= z2

z2 − z + 1

Poles are z = 1
2 ±

√
3

2 j = e±jπ/3.

What are the implications of complex poles?



Complex Poles

Partial fractions work even when the poles are complex.

Y

X
= 1

1− e jπ/3R
× 1

1− e−jπ/3R
= 1
j
√

3

(
e jπ/3

1− e jπ/3R
− e−jπ/3

1− e−jπ/3R

)

There are two fundamental modes (both geometric sequences):

e jnπ/3 = cos(nπ/3)+ j sin(nπ/3) and e−jnπ/3 = cos(nπ/3)− j sin(nπ/3)

n n



Complex Poles

Complex modes are easier to visualize in the complex plane.

e jnπ/3 = cos(nπ/3) + j sin(nπ/3)

Re

Im

e j0π/3

e j1π/3e j2π/3

e j3π/3

e j4π/3 e j5π/3

n

e−jnπ/3 = cos(nπ/3)− j sin(nπ/3)

Re

Im

e j0π/3

e j5π/3e j4π/3

e j3π/3

e j2π/3 e j1π/3

n



Complex Poles

The output of a “real” system has real values.

y[n] = x[n] + y[n− 1]− y[n− 2]

H = Y
X

= 1
1−R+R2

= 1
1− e jπ/3R

× 1
1− e−jπ/3R

= 1
j
√

3

(
e jπ/3

1− e jπ/3R
− e−jπ/3

1− e−jπ/3R

)

h[n] = 1
j
√

3

(
e j(n+1)π/3 − e−j(n+1)π/3

)
= 2√

3
sin (n+ 1)π

3

1

−1

n

h[n]



Check Yourself

Unit-sample response of a system with poles at z = re±jΩ.

n

Which of the following is/are true?

1. r < 0.5 and Ω ≈ 0.5
2. 0.5 < r < 1 and Ω ≈ 0.5
3. r < 0.5 and Ω ≈ 0.08
4. 0.5 < r < 1 and Ω ≈ 0.08
5. none of the above



Check Yourself

Unit-sample response of a system with poles at z = re±jΩ.

n

Which of the following is/are true? 2

1. r < 0.5 and Ω ≈ 0.5
2. 0.5 < r < 1 and Ω ≈ 0.5
3. r < 0.5 and Ω ≈ 0.08
4. 0.5 < r < 1 and Ω ≈ 0.08
5. none of the above



Check Yourself

R R R+X Y

How many of the following statements are true?

1. This system has 3 fundamental modes.

2. All of the fundamental modes can be written as geometrics.

3. Unit-sample response is y[n] : 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . .

4. Unit-sample response is y[n] : 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . .

5. One of the fundamental modes of this system is the unit

step.



Check Yourself

R R R+X Y

How many of the following statements are true? 4

1. This system has 3 fundamental modes.

2. All of the fundamental modes can be written as geometrics.

3. Unit-sample response is y[n] : 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . .

4. Unit-sample response is y[n] : 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . .

5. One of the fundamental modes of this system is the unit

step.



Summary

Systems composed of adders, gains, and delays can be characterized

by their poles.

The poles of a system determine its fundamental modes.

The unit-sample response of a system can be expressed as a weighted

sum of fundamental modes.

These properties follow from a polynomial interpretation of the sys-

tem functional.


