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6.003: Signals and Systems Previously: DT Systems

i ) Verbal descriptions: preserve the rationale.
Continuous-Time Systems

“Next year, your account will contain p times your balance
from this year plus the money that you added this year.”

Difference equations: mathematically compact.
y[n + 1] = z[n] + py[n]

Block diagrams: illustrate signal flow paths.

L g—

Operator representations: analyze systems as polynomials.

(1-pR)Y =RX
February 11, 2010

Analyzing CT Systems Differential Equations

Verbal descriptions: preserve the rationale. Differential equations are mathematically precise and compact.

“Your account will grow in proportion to the current interest
rate plus the rate at which you deposit.”

e | TO(f/)

Differential equations: mathematically compact.
dy(t hi(t)
d(t) = x(t) + py(t) (%)

Block diagrams: illustrate signal flow paths.
dri(t) _ ro(t) —r1(t)

G [ ® & "
z(t) —» . > Yy
—00 Solution methodologies:
e general methods (separation of variables; integrating factors)
pl e homogeneous and particular solutions
| e inspection
Operator representations: analyze systems as polynomials. Today: new methods based on block diagrams and operators,
(1-pA)Y = AX which provide new ways to think about systems’ behaviors.
Block Diagrams Operator Representation
Block diagrams illustrate signal flow paths. CT Block diagrams are concisely represented with the A operator.

DT: adders, scalers, and delays — represent systems described by

linear difference equations with constant coefficents. Applying A to a CT signal generates a new signal that is equal to

the integral of the first signal at all points in time.

z[n] —>®—>—> y[n] Y — Ax

is equivalent to

y(t) = ./j z(7)dr

o

CT: adders, scalers, and integrators — represent systems described
by a linear differential equations with constant coefficients.

-t
a(t) —>(D—» /_ (-)dt > (1)

I o
d

for all time ¢.
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Evaluating Operator Expressions

Evaluating Operator Expressions

As with R, A expressions can be manipulated as polynomials.

X - —— @D ¥

t
w(t) = z(t) + /700 x(T)dr

t
y(t) = w(t) + /_ w(T)dr

y(t) =z(t) + /joo z(7)dr + /joo z(7)dr + /joo ( /j; x(T1)d7’1> dr

W=01+A)X
Y=1+AW=01+A0+A)X=1+24+A4>)X

Expressions in A can be manipulated using rules for polynomials.
e Commutativity: A(1-A)X =(1-A)AX
o Distributivity: A(1 —A)X = (A — A2)X

o Associativity: ((1-A)A)(2— A)X = (1 - A)(A2 - 4)X

Check Yourself

Elementary Building-Block Signals

X —()—{ 4] Y 9(t) = &(t) + pii(t)
D>y

Tilgwl”

x —)

y(t) = z(t) + py(t)

g(t) = px(t) + py(t)

[ Which best illustrates the left-right correspondences?

5. none

Elementary DT signal: §[n].

1, ifn=0;
dn) = ;
0, otherwise

do[n]
o—T—lo—o—%o
n
0

e shortest possible duration (most ‘“transient”)
e useful for constructing more complex signals

What CT signal serves the same purpose?

Elementary CT Building-Block Signal

Consider the analogous CT signal.

0 t<O0
w(t):{l t=0

0 t>0

~

Is this a good choice as a building-block signal?

Unit-Impulse Signal
The unit-impulse signal acts as a pulse with unit area but zero width.
Pe(t>
1
2% unit area
4(t) = lim pe(t)
e—0
—€ € t
p1/2(t) P1/4(t) p1/8(t)
4
2
' t t t
1 1 1 1 11
2 2 4 4 8 8
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Unit-Impulse Signal

Unit-Impulse and Unit-Step Signals

The unit-impulse function is represented by an arrow with the num-
ber 1, which represents its area or “weight.”

6(t)
Jl_
t
It has two seemingly contradictory properties:

e it is nonzero only at ¢t =0, and
e its definite integral (—oo, ) is one!

Both of these properties follow from thinking about 4(¢) as a limit:

De(t)

2 unit area
o(t) = lina) pe(t)
e—

The indefinite integral of the unit-impulse is the unit-step.

ot L, t>0
u(t) = / O(A)dX = .
o 0; otherwise
u(t)
1

Equivalently

Impulse Response of Acyclic CT System

CT Feedback

If the block diagram of a CT system has no feedback (i.e., no cycles),
then the corresponding operator expression is “imperative.”

Y=(1+A0+A)X=(1+24+AY)X

If 2(t) = 6(t) then
y(t) = (1+ 24+ A%) 6(t) = 6(t) + 2u(t) + tu(t)

Find the impulse response of this CT system with feedback.

z(t) —(1)

e

Method 1: find differential equation and solve it.

—> y(t)

9(t) = =(t) + py(t)
Linear, first-order difference equation with constant coefficients.
Try y(t) = Ce™u(t).
Then ¢(t) = aCe™u(t) + Ce™s(t) = aCe™u(t) + C5(t).
Substituting, we find that aCe®u(t) + C5(t) = §(t) + pCe™u(t).

Therefore a=pand C=1 — y(t) = ePlu(t).

CT Feedback

CT Feedback

Find the impulse response of this CT system with feedback.

z(t) —>®—>—> y(t)

—

Method 2: use operators.

Y =A(X+pY)
Y A

X~ 1-pA

Now expand in ascending series in A:

= AL +pA+p2 A2+ pP A3+ )
=4(t) then

)= AL +pA+p A2+ p3 A3+ ) 6(t)

| <

If x(t

Y

= =

1 1
=1 +pt+ 5p2t2 + 6p3t3 + - ult) = ePu(t) .

We can visualize the feedback by tracing each cycle through the
cyclic signal path.

o(t) —-

\T% _;y(t)

y(t) = (A+pA2 +p2 A3+ PP A + ) 6(1)

159 1
=1+pt+ 5])21‘,2 + 8p3t3 o Yult) = ePlu(t)

y(t)
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CT Feedback

Convergent and Divergent Poles

Making p negative makes the output converge.

#() Oﬁ,ﬁ:,’_‘ > y(1)
[ ’__|| >

yis

y(t) = (A — pA2 + p? A3 — PP A + - )5(8)

1 1 5.
=(1—pt+ 5]72252 - 6p3t3 +Yult) = e Plu(t)

y(t)

—_

The fundamental mode associated with p diverges if p > 0 and con-
verges if p < 0.

X —»C)—».— — Y

Convergent and Divergent Poles

CT Feedback

The fundamental mode associated with p diverges if p > 0 and con-

verges if p <0.
el

Imp
y

Convergent Divergent

» Rep

In CT, each cycle adds a new integration.

z(t) o ]

\T%__;y(t)

iy
s

y(t) = (A+pA2 + p2 A3+ PP A + ) 6(1)

1 5 ¢ 1 5
=(1+pt+ Ep‘)tz + 6[}‘5#5 + - Ju(t) = eptu(t)

y(t)

Feedback in DT Systems

Comparison of CT and DT representations

In DT, each cycle creates another sample in the output.

X = -y

y[n] = (1+pR + p?R? + p*R3 + p' R + ) é[n]
= d[n] + pd[n — 1] + p?6[n — 2] + p®8[n — 3] + p*o[n — 4] + - --

y[n]

n
-101 2 3 4

Locations of convergent poles differ for CT and DT systems.

X—>®—>

C g

A 1
1-pA 1-pR
ePlu(t) p"uln]
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Mass and Spring System

Mass and Spring System

Use the A operator to solve the mass and spring system.

—> y(t)

Factor system functional to find the poles.

Z: %42 _ %AZ
X 1+842  (1-poA)1-prA)

K
1+ MAZ =1—(po +p1)A+ poprA?

The sum of the poles must be zero.
The product of the poles must be K/M.

VM n= VM

Mass and Spring System

Mass and Spring System

Alternatively, find the poles by substituting A — %

The poles are then the roots of the denominator.

y g
X LK 12
X 1444

Substitute A — L

S
K

Y _ u
i
X S2+T[
K
=4
SEEN M

The poles are complex conjugates.

Ims
s-plane

= wo

Res

K
M=o

The corresponding fundamental modes have complex values.
fundamental mode 1: €/“0t = coswyt + jsinwpt

fundamental mode 2: ¢ /%0! = coswyt — j sinwgt

Mass and Spring System

Mass and Spring System

Real-valued inputs always excite combinations of these modes so
that the imaginary parts cancel.

Example: find the impulse response.

51%42:%<A,A)
X 1+842 po-pr\l1-pA 1-piA

_ (L _ L)
2jwp \ 1 — jwpA 14 jwpA

-5 () % ()
T 25\l —jwpA) 2§ \ 1+ jwgA

makes mode 1 makes mode 2

The modes themselves are complex conjugates, and their coefficients
are also complex conjugates. So the sum is a sum of something and
its complex conjugate, which is real.

The impulse response is therefore real.

=5 () -5 ()
X 25 \1—jwA 25 \ 1+ jwpA

The impulse response is

h(t) = L0pdwot _ L0 ,—jwot

% 5 =wpsinwpt; t>0

y(t)
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Mass and Spring System

Mass and Spring System

Alternatively, find impulse response by expanding system functional.

0 »@_,+ ()
T |

2 12
Y_ @A ppe

WA g4 6 46
At 4w A® =+
X 14uwA? 0 o

If z(t) = 6(¢t) then
6t

o0
y(t) = it — wioo 31 twog —

Look at successive approximations to this infinite series.

Y wiA? l
X Tre 2A2§(—W3A2)

If z(t) = (5(1‘) then
w3 (wg)lA?’“(s(t)

t° t7
= wit —wi +w6 wd
0 03, 05y ~ w07y

y(t)

y(t) =

‘M%%

Mass and Spring System

Comparison of CT and DT representations

Look at successive approximations to this infinite series.

Y uJo.A
X 1-§—w2.A2 wUAZ< )
If z(t) = 4(t) then

o0
y(®) = Y wd (—w) A2

1=0

3 tb t7 9
= wof wégl +w85' wS?' +w(1,og — 4+ = wpsinwpt
y(t)
0 t

Important similarities and important differences.

X—»@—»—»Y x —()

<o

1
1-pR

1-pA

ePlu( puln]

+




