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6.003: Signals and Systems

Continuous-Time Systems

February 11, 2010

Previously: DT Systems

Verbal descriptions: preserve the rationale.

“Next year, your account will contain p times your balance

from this year plus the money that you added this year.”

Difference equations: mathematically compact.

y[n+ 1] = x[n] + py[n]

Block diagrams: illustrate signal flow paths.

+ Delay

p

x[n] y[n]

Operator representations: analyze systems as polynomials.

(1− pR)Y = RX

Analyzing CT Systems

Verbal descriptions: preserve the rationale.

“Your account will grow in proportion to the current interest

rate plus the rate at which you deposit.”

Differential equations: mathematically compact.
dy(t)
dt

= x(t) + py(t)

Block diagrams: illustrate signal flow paths.

+
∫ t
−∞

( · ) dt

p

x(t) y(t)

Operator representations: analyze systems as polynomials.

(1− pA)Y = AX

Differential Equations

Differential equations are mathematically precise and compact.

r0(t)

r1(t)
h1(t)

dr1(t)
dt

= r0(t)− r1(t)
τ

Solution methodologies:

• general methods (separation of variables; integrating factors)

• homogeneous and particular solutions

• inspection

Today: new methods based on block diagrams and operators,

which provide new ways to think about systems’ behaviors.

Block Diagrams

Block diagrams illustrate signal flow paths.

DT: adders, scalers, and delays – represent systems described by

linear difference equations with constant coefficents.

+ Delay

p

x[n] y[n]

CT: adders, scalers, and integrators – represent systems described

by a linear differential equations with constant coefficients.

+
∫ t
−∞

( · ) dt

p

x(t) y(t)

Operator Representation

CT Block diagrams are concisely represented with the A operator.

Applying A to a CT signal generates a new signal that is equal to

the integral of the first signal at all points in time.

Y = AX
is equivalent to

y(t) =
∫ t
−∞
x(τ) dτ

for all time t.
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Evaluating Operator Expressions

As with R, A expressions can be manipulated as polynomials.

+ +

A A
X Y

W

w(t) = x(t) +
∫ t
−∞
x(τ)dτ

y(t) = w(t) +
∫ t
−∞
w(τ)dτ

y(t) = x(t) +
∫ t
−∞
x(τ)dτ +

∫ t
−∞
x(τ)dτ +

∫ t
−∞

( ∫ τ2
−∞
x(τ1)dτ1

)
dτ2

W = (1 +A)X

Y = (1 +A)W = (1 +A)(1 +A)X = (1 + 2A+A2)X

Evaluating Operator Expressions

Expressions in A can be manipulated using rules for polynomials.

• Commutativity: A(1−A)X = (1−A)AX

• Distributivity: A(1−A)X = (A−A2)X

• Associativity:
(

(1−A)A
)

(2−A)X = (1−A)
(
A(2−A)

)
X

Check Yourself

A
p

+X Y

A p+X Y

Ap

+X Y

ẏ(t) = ẋ(t) + pÿ(t)

ẏ(t) = x(t) + py(t)

ẏ(t) = px(t) + py(t)

Which best illustrates the left-right correspondences?

1. 2. 3. 4. 5. none

Elementary Building-Block Signals

Elementary DT signal: δ[n].

δ[n] =
{ 1, if n = 0;

0, otherwise

0

1

n

δ[n]

• shortest possible duration (most “transient”)

• useful for constructing more complex signals

What CT signal serves the same purpose?

Elementary CT Building-Block Signal

Consider the analogous CT signal.

w(t) =


0 t < 0
1 t = 0
0 t > 0

t

w(t)
1

0

Is this a good choice as a building-block signal?

Unit-Impulse Signal

The unit-impulse signal acts as a pulse with unit area but zero width.

t−ε ε

1
2ε

pε(t)

δ(t) = lim
ε→0
pε(t)

unit area

t

−1
2

1
2

1

p1/2(t)

t

−1
4

1
4

2

p1/4(t)

t

−1
8

1
8

4
p1/8(t)
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Unit-Impulse Signal

The unit-impulse function is represented by an arrow with the num-

ber 1, which represents its area or “weight.”

t

δ(t)

1

It has two seemingly contradictory properties:

• it is nonzero only at t = 0, and

• its definite integral (−∞,∞) is one !

Both of these properties follow from thinking about δ(t) as a limit:

t−ε ε

1
2ε

pε(t)

δ(t) = lim
ε→0
pε(t)

unit area

Unit-Impulse and Unit-Step Signals

The indefinite integral of the unit-impulse is the unit-step.

u(t) =
∫ t
−∞
δ(λ) dλ =

{ 1; t ≥ 0
0; otherwise

t

u(t)
1

Equivalently

Aδ(t) u(t)

Impulse Response of Acyclic CT System

If the block diagram of a CT system has no feedback (i.e., no cycles),

then the corresponding operator expression is “imperative.”

+ +

A A
X Y

Y = (1 +A)(1 +A)X = (1 + 2A+A2)X

If x(t) = δ(t) then

y(t) = (1 + 2A+A2) δ(t) = δ(t) + 2u(t) + tu(t)

CT Feedback

Find the impulse response of this CT system with feedback.

+ A

p

x(t) y(t)

Method 1: find differential equation and solve it.

ẏ(t) = x(t) + py(t)

Linear, first-order difference equation with constant coefficients.

Try y(t) = Ceαtu(t).

Then ẏ(t) = αCeαtu(t) + Ceαtδ(t) = αCeαtu(t) + Cδ(t).

Substituting, we find that αCeαtu(t) + Cδ(t) = δ(t) + pCeαtu(t).

Therefore α = p and C = 1 → y(t) = eptu(t).

CT Feedback

Find the impulse response of this CT system with feedback.

+ A

p

x(t) y(t)

Method 2: use operators.

Y = A (X + pY )
Y

X
= A

1− pA
Now expand in ascending series in A:
Y

X
= A(1 + pA+ p2A2 + p3A3 + · · ·)

If x(t) = δ(t) then

y(t) = A(1 + pA+ p2A2 + p3A3 + · · ·) δ(t)
= (1 + pt+ 1

2p
2t2 + 1

6p
3t3 + · · ·)u(t) = eptu(t) .

CT Feedback

We can visualize the feedback by tracing each cycle through the

cyclic signal path.

+ A

p

x(t) y(t)

y(t) = (A+ pA2 + p2A3 + p3A4 + · · ·) δ(t)
= (1 + pt+ 1

2p
2t2 + 1

6p
3t3 + · · ·)u(t) = eptu(t)

t

y(t)

1

0
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CT Feedback

Making p negative makes the output converge.

+ A

−p

x(t) y(t)

y(t) = (A− pA2 + p2A3 − p3A4 + · · ·) δ(t)
= (1− pt+ 1

2p
2t2 − 1

6p
3t3 + · · ·)u(t) = e−ptu(t)

t

y(t)

1

0

Convergent and Divergent Poles

The fundamental mode associated with p diverges if p > 0 and con-

verges if p < 0.

+ A

p

X Y

t

y(t)

1

0

p = 1

t

y(t)

1

0

p = −1

Convergent and Divergent Poles

The fundamental mode associated with p diverges if p > 0 and con-

verges if p < 0.

+ A

p

X Y

Re p

Im p

Re p

Convergent Divergent

CT Feedback

In CT, each cycle adds a new integration.

+ A

p

x(t) y(t)

y(t) = (A+ pA2 + p2A3 + p3A4 + · · ·) δ(t)
= (1 + pt+ 1

2p
2t2 + 1

6p
3t3 + · · ·)u(t) = eptu(t)

t

y(t)

1

0

Feedback in DT Systems

In DT, each cycle creates another sample in the output.

Delay

+

p0

X Y

y[n] = (1 + pR+ p2R2 + p3R3 + p4R4 + · · ·) δ[n]
= δ[n] + pδ[n− 1] + p2δ[n− 2] + p3δ[n− 3] + p4δ[n− 4] + · · ·

−1 0 1 2 3 4
n

y[n]

Comparison of CT and DT representations

Locations of convergent poles differ for CT and DT systems.

+ A

p

X Y +

Delayp

X Y

A
1− pA

1
1− pR

e ptu(t) pnu[n]
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Mass and Spring System

Use the A operator to solve the mass and spring system.

x(t)

y(t)

F = K
(
x(t)− y(t)) =Mÿ(t)

+ K

M
A A

−1

x(t) y(t)
ẏ(t)ÿ(t)

Y

X
=

K
MA2

1 + KMA2

Mass and Spring System

Factor system functional to find the poles.

Y

X
=

K
MA2

1 + KMA2 =
K
MA2

(1− p0A)(1− p1A)

1 + K
M
A2 = 1− (p0 + p1)A+ p0p1A2

The sum of the poles must be zero.

The product of the poles must be K/M .

p0 = j
√
K

M
p1 = −j

√
K

M

Mass and Spring System

Alternatively, find the poles by substituting A → 1
s .

The poles are then the roots of the denominator.

Y

X
=

K
MA2

1 + KMA2

Substitute A → 1
s :

Y

X
=

K
M

s2 + KM

s = ±j
√
K

M

Mass and Spring System

The poles are complex conjugates.

Re s

Im s
s-plane √

K
M ≡ ω0

−
√
K
M ≡ −ω0

The corresponding fundamental modes have complex values.

fundamental mode 1: ejω0t = cosω0t+ j sinω0t

fundamental mode 2: e−jω0t = cosω0t− j sinω0t

Mass and Spring System

Real-valued inputs always excite combinations of these modes so

that the imaginary parts cancel.

Example: find the impulse response.

Y

X
=

K
MA2

1 + KMA2 =
K
M

p0 − p1

( A
1− p0A −

A
1− p1A

)
= ω2

0
2jω0

( A
1− jω0A −

A
1 + jω0A

)
= ω0

2j

( A
1− jω0A

)
︸ ︷︷ ︸
makes mode 1

−ω0
2j

( A
1 + jω0A

)
︸ ︷︷ ︸
makes mode 2

The modes themselves are complex conjugates, and their coefficients

are also complex conjugates. So the sum is a sum of something and

its complex conjugate, which is real.

Mass and Spring System

The impulse response is therefore real.

Y

X
= ω0

2j

( A
1− jω0A

)
− ω0

2j

( A
1 + jω0A

)

The impulse response is

h(t) = ω0
2j e
jω0t − ω0

2j e
−jω0t = ω0 sinω0t ; t > 0

t

y(t)

0
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Mass and Spring System

Alternatively, find impulse response by expanding system functional.

+ ω2
0 A A

−1

x(t) y(t)
ẏ(t)ÿ(t)

Y

X
= ω2

0A2

1 + ω2
0A2 = ω2

0A2 − ω4
0A4 + ω6

0A6 −+ · · ·

If x(t) = δ(t) then

y(t) = ω2
0t− ω4

0
t3

3! + ω6
0
t5

5! −+ · · · , t ≥ 0

Mass and Spring System

Look at successive approximations to this infinite series.

Y

X
= ω2

0A2

1 + ω2
0A2 = ω2

0A2
∞∑
l=0

(
−ω2

0A2
)l

If x(t) = δ(t) then

y(t) =
∞∑
l=0
ω2

0
(
−ω2

0
)lA2l+2δ(t)

= ω2
0t− ω4

0
t3

3! + ω6
0
t5

5! − ω
8
0
t7

7!

t

y(t)

0

Mass and Spring System

Look at successive approximations to this infinite series.

Y

X
= ω2

0A2

1 + ω2
0A2 = ω2

0A2
∞∑
l=0

(
−ω2

0A2
)l

If x(t) = δ(t) then

y(t) =
∞∑
l=0
ω2

0
(
−ω2

0
)lA2l+2δ(t)

= ω2
0t− ω4

0
t3

3! + ω6
0
t5

5! − ω
8
0
t7

7! + ω10
0
t9

9! −+ · · · = ω0 sinω0t

t

y(t)

0

Comparison of CT and DT representations

Important similarities and important differences.

+ A

p

X Y +

Delayp

X Y

A
1− pA

1
1− pR

e ptu(t) pnu[n]


