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Concept Map: Continuous-Time Systems

Multiple representations of CT systems.

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX



Concept Map: Continuous-Time Systems

Relations among representations.

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX



Concept Map: Continuous-Time Systems

Two interpretations of
∫
.

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX



Concept Map: Continuous-Time Systems

Relation between System Functional and System Function.

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX

A → 1
s



Check Yourself

How to determine impulse response from system functional?

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX



Check Yourself

How to determine impulse response from system functional?

Expand functional using partial fractions:

Y

X
= 2A2

2 + 3A+A2 = A2

(1 + 1
2A)(1 +A)

= 2A
1 + 1

2A
− 2A

1 +A

Recognize forms of terms: each corresponds to an exponential.

Alternatively, expand each term in a series:

Y

X
= 2A

(
1− 1

2
A+ 1

4
A2 − 1

8
A3 +− · · ·

)
− 2A

(
1−A+A2 −A3 +− · · ·

)
Let X = δ(t). Then

Y = 2
(

1− 1
2
t+ 1

8
t2 − 1

48
t3 +− · · ·

)
u(t)− 2

(
1− t+ 1

2
t2 − 1

3!
t3 +− · · ·

)
u(t)

= 2
(
e−t/2 − e−t

)
u(t)



Check Yourself

How to determine impulse response from system functional?

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX

series partial
fractions



Concept Map: Continuous-Time Systems

Today: new relations based on Laplace transform.

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX



Laplace Transform: Definition

Laplace transform maps a function of time t to a function of s.

X(s) =
∫
x(t)e−stdt

There are two important variants:

Unilateral (18.03)

X(s) =
∫ ∞

0
x(t)e−stdt

Bilateral (6.003)

X(s) =
∫ ∞
−∞
x(t)e−stdt

Both share important properties — will discuss differences later.



Laplace Transforms

Example: Find the Laplace transform of x1(t):

0
t

x1(t)

x1(t) =
{
e−t if t ≥ 0
0 otherwise

X1(s) =
∫ ∞
−∞
x1(t)e−stdt =

∫ ∞
0
e−te−stdt = e

−(s+1)t

−(s+ 1)

∣∣∣∣∣
∞

0
= 1
s+ 1

provided Re(s+ 1) > 0 which implies that Re(s) > −1.

−1

s-plane

ROC1
s+ 1

; Re(s) > −1



Check Yourself

0
t

x2(t)

x2(t) =
{
e−t − e−2t if t ≥ 0
0 otherwise

Which of the following is the Laplace transform of x2(t)?

1. X2(s) = 1
(s+1)(s+2) ; Re(s) > −1

2. X2(s) = 1
(s+1)(s+2) ; Re(s) > −2

3. X2(s) = s
(s+1)(s+2) ; Re(s) > −1

4. X2(s) = s
(s+1)(s+2) ; Re(s) > −2

5. none of the above



Check Yourself

X2(s) =
∫ ∞

0
(e−t − e−2t)e−stdt

=
∫ ∞

0
e−te−stdt−

∫ ∞
0
e−2te−stdt

= 1
s+ 1

− 1
s+ 2

= (s+ 2)− (s+ 1)
(s+ 1)(s+ 2)

= 1
(s+ 1)(s+ 2)

These equations converge if Re(s + 1) > 0 and Re(s + 2) > 0, thus

Re(s) > −1.

−1−2

s-plane

ROC1
(s+ 1)(s+ 2)

; Re(s) > −1



Check Yourself

0
t

x2(t)

x2(t) =
{
e−t − e−2t if t ≥ 0
0 otherwise

Which of the following is the Laplace transform of x2(t)?

1. X2(s) = 1
(s+1)(s+2) ; Re(s) > −1

2. X2(s) = 1
(s+1)(s+2) ; Re(s) > −2

3. X2(s) = s
(s+1)(s+2) ; Re(s) > −1

4. X2(s) = s
(s+1)(s+2) ; Re(s) > −2

5. none of the above



Regions of Convergence

Left-sided signals have left-sided Laplace transforms (bilateral only).

Example:

t

x3(t)

−1
x3(t) =

{
−e−t if t ≤ 0
0 otherwise

X3(s) =
∫ ∞
−∞
x3(t)e−stdt =

∫ 0

−∞
−e−te−stdt = −e

−(s+1)t

−(s+ 1)

∣∣∣∣∣
0

−∞
= 1
s+ 1

provided Re(s+ 1) < 0 which implies that Re(s) < −1.

−1

s-plane

R
O

C
1
s+ 1

; Re(s) < −1



Left- and Right-Sided ROCs

Laplace transforms of left- and right-sided exponentials have the

same form (except −); with left- and right-sided ROCs, respectively.

0
t

e−tu(t)
time function Laplace transform

−1

s-plane

ROC1
s+ 1

t

−e−tu(−t)

−1 −1

s-plane

R
O

C

1
s+ 1



Left- and Right-Sided ROCs

Laplace transforms of left- and right-sided exponentials have the

same form (except −); with left- and right-sided ROCs, respectively.

0
t

e−tu(t)
time function Laplace transform

−1

s-plane

ROC1
s+ 1

t

−e−tu(−t)

−1 −1

s-plane

R
O

C

1
s+ 1



Check Yourself

Find the Laplace transform of x4(t).

0
t

x4(t)

x4(t) = e−|t|

1. X4(s) = 2
1−s2 ; −∞ < Re(s) <∞

2. X4(s) = 2
1−s2 ; −1 < Re(s) < 1

3. X4(s) = 2
1+s2 ; −∞ < Re(s) <∞

4. X4(s) = 2
1+s2 ; −1 < Re(s) < 1

5. none of the above



Check Yourself

X4(s) =
∫ ∞
−∞
e−|t|e−stdt

=
∫ 0

−∞
e(1−s)tdt+

∫ ∞
0
e−(1+s)tdt

= e
(1−s)t

(1− s)

∣∣∣∣∣
0

−∞
+ e
−(1+s)t

−(1 + s)

∣∣∣∣∣
∞

0

= 1
1− s︸ ︷︷ ︸

Re(s)<1

+ 1
1 + s︸ ︷︷ ︸

Re(s)>−1

= 1 + s+ 1− s
(1− s)(1 + s)

= 2
1− s2

; −1 < Re(s) < 1

The ROC is the intersection of Re(s) < 1 and Re(s) > −1.



Check Yourself

The Laplace transform of a signal that is both-sided a vertical strip.

0
t

x4(t)

x4(t) = e−|t|

−1 1

s-plane

ROCX4(s) = 2
1− s2

−1 < Re(s) < 1



Check Yourself

Find the Laplace transform of x4(t). 2

0
t

x4(t)

x4(t) = e−|t|

1. X4(s) = 2
1−s2 ; −∞ < Re(s) <∞

2. X4(s) = 2
1−s2 ; −1 < Re(s) < 1

3. X4(s) = 2
1+s2 ; −∞ < Re(s) <∞

4. X4(s) = 2
1+s2 ; −1 < Re(s) < 1

5. none of the above



Time-Domain Interpretation of ROC

X(s) =
∫ ∞
−∞
x(t) e−stdt

t

x1(t)
s-plane

−1

t

x2(t)
s-plane

−1−2

t

x3(t)

−1

s-plane

−1

t

x4(t)
s-plane

−1 1



Time-Domain Interpretation of ROC

X(s) =
∫ ∞
−∞
x(t) e−stdt

t

x1(t)
s-plane

−1

t

x2(t)
s-plane

−1−2

t

x3(t)

−1

s-plane

−1

t

x4(t)
s-plane

−1 1



Time-Domain Interpretation of ROC

X(s) =
∫ ∞
−∞
x(t) e−stdt

t

x1(t)
s-plane

−1

t

x2(t)
s-plane

−1−2

t

x3(t)

−1

s-plane

−1

t

x4(t)
s-plane

−1 1



Time-Domain Interpretation of ROC

X(s) =
∫ ∞
−∞
x(t) e−stdt

t

x1(t)
s-plane

−1

t

x2(t)
s-plane

−1−2

t

x3(t)

−1

s-plane

−1

t

x4(t)
s-plane

−1 1



Check Yourself

The Laplace transform 2s
s2−4 corresponds to how many of

the following signals?

1. e−2tu(t) + e2tu(t)

2. e−2tu(t)− e2tu(−t)

3. −e−2tu(−t) + e2tu(t)

4. −e−2tu(−t)− e2tu(−t)



Check Yourself

Expand with partial fractions:
2s
s2 − 4

= 1
s+ 2︸ ︷︷ ︸

pole at −2

+ 1
s− 2︸ ︷︷ ︸

pole at 2

pole function right-sided; ROC left-sided (ROC)

−2 e−2t e−2tu(t); Re(s) > −2 −e−2tu(−t); Re(s) < −2
2 e2t e2tu(t); Re(s) > 2 −e2tu(−t); Re(s) < 2

1. e−2tu(t) + e2tu(t) Re(s) > −2 ∩Re(s) > 2 Re(s) > 2

2. e−2tu(t)− e2tu(−t) Re(s) > −2 ∩Re(s) < 2 −2 < Re(s) < 2

3. −e−2tu(−t)+e2tu(t) Re(s) < −2 ∩Re(s) > 2 none

4. −e−2tu(−t)− e2tu(−t) Re(s) < −2 ∩Re(s) < 2 Re(s) < −2



Check Yourself

The Laplace transform 2s
s2−4 corresponds to how many of

the following signals? 3

1. e−2tu(t) + e2tu(t)

2. e−2tu(t)− e2tu(−t)

3. −e−2tu(−t) + e2tu(t)

4. −e−2tu(−t)− e2tu(−t)



Solving Differential Equations with Laplace Transforms

Solve the following differential equation:

ẏ(t) + y(t) = δ(t)

Take the Laplace transform of this equation.

L{ẏ(t) + y(t)} = L{δ(t)}

The Laplace transform of a sum is the sum of the Laplace transforms

(prove this as an exercise).

L{ẏ(t)}+ L{y(t)} = L{δ(t)}

What’s the Laplace transform of a derivative?



Laplace transform of a derivative

Assume that X(s) is the Laplace transform of x(t):

X(s) =
∫ ∞
−∞
x(t)e−stdt

Find the Laplace transform of y(t) = ẋ(t).

Y (s) =
∫ ∞
−∞
y(t)e−stdt =

∫ ∞
−∞
ẋ(t)︸︷︷︸
v̇

e−st︸︷︷︸
u

dt

= x(t)︸︷︷︸
v

e−st︸︷︷︸
u

∣∣∣∣∞
−∞
−
∫ ∞
−∞
x(t)︸︷︷︸
v

(−se−st︸ ︷︷ ︸
u̇

)dt

The first term must be zero since X(s) converged. Thus

Y (s) = s
∫ ∞
−∞
x(t)e−stdt = sX(s)



Solving Differential Equations with Laplace Transforms

Back to the previous problem:

L{ẏ(t)}+ L{y(t)} = L{δ(t)}

Let Y (s) represent the Laplace transform of y(t).

Then sY (s) is the Laplace transform of ẏ(t).

sY (s) + Y (s) = L{δ(t)}

What’s the Laplace transform of the impulse function?



Laplace transform of the impulse function

Let x(t) = δ(t).

X(s) =
∫ ∞
−∞
δ(t)e−stdt

=
∫ ∞
−∞
δ(t) e−st

∣∣
t=0 dt

=
∫ ∞
−∞
δ(t) 1 dt

= 1

Sifting property: δ(t) sifts out the value of e−st at t = 0.



Solving Differential Equations with Laplace Transforms

Back to the previous problem:

sY (s) + Y (s) = L{δ(t)} = 1

This is a simple algebraic expression. Solve for Y (s):

Y (s) = 1
s+ 1

We’ve seen this Laplace transform previously.

y(t) = e−tu(t)

Notice that we solved the differential equation ẏ(t)+y(t) = δ(t) without

computing homogeneous and particular solutions.



Solving Differential Equations with Laplace Transforms

Back to the previous problem:

sY (s) + Y (s) = L{δ(t)} = 1

This is a simple algebraic expression. Solve for Y (s):

Y (s) = 1
s+ 1

We’ve seen this Laplace transform previously.

y(t) = e−tu(t) (why not y(t) = −e−tu(−t) ?)

Notice that we solved the differential equation ẏ(t)+y(t) = δ(t) without

computing homogeneous and particular solutions.



Solving Differential Equations with Laplace Transforms

Summary of method.

Start with differential equation:

ẏ(t) + y(t) = δ(t)

Take the Laplace transform of this equation:

sY (s) + Y (s) = 1

Solve for Y (s):

Y (s) = 1
s+ 1

Take inverse Laplace transform (by recognizing form of transform):

y(t) = e−tu(t)



Solving Differential Equations with Laplace Transforms

Recognizing the form ...

Is there a more systematic way to take an inverse Laplace transform?

Yes ... and no.

Formally,

x(t) = 1
2πj

∫ σ+j∞
σ−j∞

X(s)estds

but this integral is not generally easy to compute.

This equation can be useful to prove theorems.

We will find better ways (e.g., partial fractions) to compute inverse

transforms for common systems.



Solving Differential Equations with Laplace Transforms

Example 2:

ÿ(t) + 3ẏ(t) + 2y(t) = δ(t)

Laplace transform:

s2Y (s) + 3sY (s) + 2Y (s) = 1

Solve:

Y (s) = 1
(s+ 1)(s+ 2)

= 1
s+ 1

− 1
s+ 2

Inverse Laplace transform:

y(t) =
(
e−t − e−2t)u(t)

These forward and inverse Laplace transforms are easy if

• differential equation is linear with constant coefficients, and

• the input signal is an impulse function.



Properties of Laplace Transforms

The use of Laplace Transforms to solve differential equations de-

pends on several important properties.

Property x(t) X(s) ROC

Linearity ax1(t) + bx2(t) aX1(s) + bX2(s) ⊃ (R1 ∩R2)

Delay by T x(t− T ) X(s)e−sT R

Multiply by t tx(t) −dX(s)
ds

R

Multiply by e−αt x(t)e−αt X(s+ α) shift R by −α

Differentiate in t
dx(t)
dt

sX(s) ⊃ R

Integrate in t

∫ t
−∞
x(τ) dτ X(s)

s
⊃
(
R ∩
(

Re(s)>0
))

Convolve in t

∫ ∞
−∞
x1(τ)x2(t− τ) dτ X1(s)X2(s) ⊃ (R1 ∩R2)



Concept Map: Continuous-Time Systems

Where does Laplace transform fit in?

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX



Concept Map: Continuous-Time Systems

Where does Laplace transform fit in?

1. Link from differential equation and system function:

Start with differential equation:

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t)

Take the Laplace transform of a each term:

2s2Y (s) + 3sY (s) + Y (s) = 2X(s)

Solve for system function:
Y (s)
X(s)

= 2
2s2 + 3s+ 1



Concept Map: Continuous-Time Systems

Where does Laplace transform fit in?

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX



Concept Map: Continuous-Time Systems

This same development shows an even more important relation.

2. Link between system function and impulse response:

Differential equation:

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t)

System function:

H(s) = Y (s)
X(s)

= 2
2s2 + 3s+ 1

If x(t) = δ(t) then y(t) is the impulse response h(t).

If X(s) = 1 then Y (s) = H(s).

System function is Laplace transform of the impulse response!



Concept Map: Continuous-Time Systems

Where does Laplace transform fit in?

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX

L



Concept Map: Continuous-Time Systems

Where does Laplace transform fit in? many more connections

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX



Initial Value Theorem

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order

singularities at t = 0 then

x(0+) = lim
s→∞
sX(s) .



Initial Value Theorem

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order

singularities at t = 0 then

x(0+) = lim
s→∞
sX(s) .

Consider lim
s→∞
sX(s) = lim

s→∞
s

∫ ∞
−∞
x(t)e−stdt = lim

s→∞

∫ ∞
0
x(t) se−stdt.

As s→∞ the function e−st shrinks towards 0.

t

e−st

s = 1
s = 5

s = 25

Area under e−st is
1
s
→ area under se−st is 1 → lim

s→∞
se−st = δ(t) !

lim
s→∞
sX(s) = lim

s→∞

∫ ∞
0
x(t)se−stdt→

∫ ∞
0
x(t)δ(t)dt = x(0+)

(the 0+ arises because the limit is from the right side.)



Final Value Theorem

If x(t) = 0 for t < 0 and x(t) has a finite limit as t→∞

x(∞) = lim
s→0
sX(s) .



Final Value Theorem

If x(t) = 0 for t < 0 and x(t) has a finite limit as t→∞

x(∞) = lim
s→0
sX(s) .

Consider lim
s→0
sX(s) = lim

s→0
s

∫ ∞
−∞
x(t)e−stdt = lim

s→0

∫ ∞
0
x(t) se−stdt.

As s → 0 the function e−st flattens out. But again, the area under

se−st is always 1.

x(∞)
t

e−st

s = 1
s = 5

s = 25

As s→ 0, area under se−st monotonically shifts to higher values of t

(e.g., the average value of se−st is 1
s which grows as s→ 0).

In the limit, lim
s→0
sX(s)→ x(∞) .


