6.003: Signals and Systems

Z Transform

February 23, 2010

Z Transform

Z transform is discrete-time analog of Laplace transform.
Furthermore, you already know about Z transforms
(we just haven't called them Z transforms)!

Example: Fibonacci system
difference equation
operator expression
system functional
unit-sample response
$y[n]=x[n]+y[n-1]+y[n-2]$
$Y=X+\mathcal{R} Y+\mathcal{R}^{2} Y$
$\frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}$
$h[n]: 1,1,2,3,5,8,13,21,34,55,89, \ldots$

Check Yourself

Example: Fibonacci system difference equation $y[n]=x[n]+y[n-1]+y[n-2]$ operator expression $Y=X+\mathcal{R} Y+\mathcal{R}^{2} Y$ system functional $\frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}$ unit-sample response $h[n]: 1,1,2,3,5,8,13,21,34,55,89, \ldots$ $\frac{Y}{X}=\sum_{n} h[n] \mathcal{R}^{n}$

What's the relation between $H(z)$ and $h[n]$?

Mid-term Examination \#1

Wednesday, March 3, 7:30-9:30pm, 34-101
No recitations on the day of the exam.
Coverage: Representations of CT and DT Systems Lectures 1-7
Recitations 1-8
Homeworks 1-4

Homework 4 will not collected or graded. Solutions will be posted
Closed book: 1 page of notes ($8 \frac{1}{2} \times 11$ inches; front and back).
Designed as 1-hour exam; two hours to complete.

Review sessions during open office hours.

Conflict? Contact freeman@mit.edu before Friday, Feb. 26, 5pm.

Check Yourself

Example: Fibonacci system
difference equation

$$
y[n]=x[n]+y[n-1]+y[n-2]
$$

operator expression $\quad Y=X+\mathcal{R} Y+\mathcal{R}^{2} Y$
system functional
unit-sample response
$\frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}$
$h[n]: 1,1,2,3,5,8,13,21,34,55,89, \ldots$

What is the relation between system functional and $h[n]$?

Concept Map: Discrete-Time Systems

Relation between Unit-Sample Response and System Function.

System Functional

$$
\frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}
$$

series

Unit-Sample Response
$h[n]: 1,1,2,3,5,8,13,21,34,55$,
$\mathcal{R} \rightarrow \frac{1}{z}$

Difference Equation

$y[n]=x[n]+y[n-1]+y[n-2]$
System Function

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{z^{2}}{1-z-z^{2}}
$$

Z Transform

Z transform is discrete-time analog of Laplace transform.
Z transform maps a function of discrete time n to a function of z.

$$
X(z)=\sum_{n} x[n] z^{-n}
$$

There are two important variants:
Unilateral

$$
X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}
$$

Bilateral

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Differences are analogous to those for the Laplace transform.

Check Yourself

Find the Z transform of a delayed unit-sample signal.

Shape of ROC

Regions of converge for Z transform are delimited by circles.
Example: $x[n]=\alpha^{n} u[n]$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} \alpha^{n} u[n] z^{-n}=\sum_{n=0}^{\infty} \alpha^{n} z^{-n} \\
& =\frac{1}{1-\alpha z^{-1}} ; \quad\left|\alpha z^{-1}\right|<1 \\
& =\frac{z}{z-\alpha} ; \quad|z|>|\alpha|
\end{aligned}
$$

$$
\frac{z}{z-\alpha}
$$

Check Yourself

Find the Z transform of the unit-sample signal.

$$
\overbrace{0}
$$

Z Transforms

Example: Find the Z transform of the following signal.

$$
X(z)=\sum_{n=-\infty}^{\infty}\left(\frac{7}{8}\right)^{n} z^{-n} u[n]=\sum_{n=0}^{\infty}\left(\frac{7}{8}\right)^{n} z^{-n}=\frac{1}{1-\frac{7}{8} z^{-1}}=\frac{z}{z-\frac{7}{8}}
$$

provided $\left|\frac{7}{8} z^{-1}\right|<1$, i.e., $|z|>\frac{7}{8}$.

Shape of ROC

Regions of converge for Laplace transform delimited by vertical lines.
Example: $x(t)=e^{\sigma t} u(t)$

$$
\begin{aligned}
X(s) & =\int_{-\infty}^{\infty} e^{\sigma t} u(t) e^{-s t} d t=\int_{0}^{\infty} e^{\sigma t} e^{-s t} d t \\
& =\frac{1}{s-\sigma} ; \quad \operatorname{Re}(s)>\operatorname{Re}(\sigma)
\end{aligned}
$$

Distinguishing Features of Transforms

Most-important feature of Laplace transforms is the derivative rule:

$$
\begin{aligned}
& x(t) \leftrightarrow X(s) \\
& \dot{x}(t) \leftrightarrow s X(s)
\end{aligned}
$$

\rightarrow allows us to use Laplace transforms to solve differential equations.

Similarly, most-important feature of Z transforms is the delay rule:

$$
\begin{aligned}
x[n] & \leftrightarrow X(z) \\
x[n-1] & \leftrightarrow z^{-1} X(z)
\end{aligned}
$$

\rightarrow allows us to use Z transforms to solve difference equations.

Check Yourself

What DT signal has the following Z transform?

$$
\frac{z}{z-\frac{7}{8}} ; \quad|z|<\frac{7}{8}
$$

Solving Difference Equations with Z Transforms

Start with difference equation:

$$
y[n]-\frac{1}{2} y[n-1]=\delta[n]
$$

Take the Z transform of this equation:

$$
Y(z)-\frac{1}{2} z^{-1} Y(z)=1
$$

Solve for $Y(z)$:

$$
Y(z)=\frac{1}{1-\frac{1}{2} z^{-1}}
$$

Take the inverse Z transform (by recognizing the form of the transform):

$$
y[n]=\left(\frac{1}{2}\right)^{n} u[n]
$$

Distinguishing Features of Transforms

Delay property

$$
\begin{aligned}
x[n] & \leftrightarrow X(z) \\
x[n-1] & \leftrightarrow z^{-1} X(z)
\end{aligned}
$$

Proof:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Let $y[n]=x[n-1]$ then

$$
Y(z)=\sum_{n=-\infty}^{\infty} y[n] z^{-n}=\sum_{n=-\infty}^{\infty} x[n-1] z^{-n}
$$

Substitute $m=n-1$

$$
Y(z)=\sum_{m=-\infty}^{\infty} x[m] z^{-m-1}=z^{-1} X(z)
$$

Check Yourself

Find the inverse transform of

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}
$$

given that the ROC includes the unit circle.

Inverse Z transform

The inverse Z transform is defined by an integral that is not particularly easy to solve.
Formally,

$$
x[n]=\frac{1}{2 \pi j} \int_{C} X(z) z^{n-1} d s
$$

were C represents a closed contour that circles the origin by running in a counterclockwise direction through the region of convergence. This integral is not generally easy to compute.
This equation can be useful to prove theorems.
There are better ways (e.g., partial fractions) to compute inverse transforms for the kinds of systems that we frequently encounter.

Properties of \mathbf{Z} Transforms

The use of Z Transforms to solve differential equations depends on several important properties.

Property	$x[n]$	$X(z)$	ROC
Linearity	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}(z)+b X_{2}(z)$	$\supset\left(R_{1} \cap R_{2}\right)$
Delay	$x[n-1]$	$z^{-1} X(z)$	R
Multiply by n	$n x[n]$	$-z \frac{d X(z)}{d z}$	R

Convolve in $n \sum_{m=-\infty}^{\infty} x_{1}[m] x_{2}[n-m] \quad X_{1}(z) X_{2}(z) \quad \supset\left(R_{1} \cap R_{2}\right)$

Concept Map: Discrete-Time Systems

Relations among representations.

