### 6.003: Signals and Systems

## Z Transform

February 23, 2010

## Mid-term Examination \#1

Wednesday, March 3, 7:30-9:30pm, 34-101.
No recitations on the day of the exam.
Coverage: Representations of CT and DT Systems
Lectures 1-7
Recitations 1-8
Homeworks 1-4

Homework 4 will not collected or graded. Solutions will be posted.

Closed book: 1 page of notes ( $8 \frac{1}{2} \times 11$ inches; front and back).

Designed as 1-hour exam; two hours to complete.

Review sessions during open office hours.

Conflict? Contact freeman@mit.edu before Friday, Feb. 26, 5pm.

## Z Transform

Z transform is discrete-time analog of Laplace transform.

## Z Transform

Z transform is discrete-time analog of Laplace transform.
Furthermore, you already know about Z transforms (we just haven't called them Z transforms)!

Example: Fibonacci system
difference equation
operator expression
system functional
unit-sample response

$$
\begin{aligned}
& y[n]=x[n]+y[n-1]+y[n-2] \\
& Y=X+\mathcal{R} Y+\mathcal{R}^{2} Y \\
& \frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}} \\
& h[n]: 1,1,2,3,5,8,13,21,34,55,89, \ldots
\end{aligned}
$$

## Check Yourself

## Example: Fibonacci system

difference equation

$$
\begin{aligned}
& y[n]=x[n]+y[n-1]+y[n-2] \\
& Y=X+\mathcal{R} Y+\mathcal{R}^{2} Y \\
& \frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}} \\
& h[n]: 1,1,2,3,5,8,13,21,34,55,89, \ldots
\end{aligned}
$$

What is the relation between system functional and $h[n]$ ?

## Check Yourself

system functional

$$
\frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}
$$

unit-sample response $h[n]: 1,1,2,3,5,8,13,21,34,55,89, \ldots$

Expand functional in a series:

$$
\begin{aligned}
& 1-\mathcal{R}-\mathcal{R}^{2} \xlongequal[1]{1+\mathcal{R}+2 \mathcal{R}^{2}+3 \mathcal{R}^{3}+5 \mathcal{R}^{4}+8 \mathcal{R}^{5}}+\cdots \\
& \frac{1-\mathcal{R}-\mathcal{R}^{2}}{\mathcal{R}+\mathcal{R}^{2}} \\
& \frac{\mathcal{R}-\mathcal{R}^{2}-\mathcal{R}^{3}}{2 \mathcal{R}^{2}+\mathcal{R}^{3}} \\
& \frac{2 \mathcal{R}^{2}-2 \mathcal{R}^{3}-2 \mathcal{R}^{4}}{3 \mathcal{R}^{3}+2 \mathcal{R}^{4}} \\
& \underline{3 \mathcal{R}^{3}-3 \mathcal{R}^{4}-3 \mathcal{R}^{5}} \\
& \frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}=1+\mathcal{R}+2 \mathcal{R}^{2}+3 \mathcal{R}^{3}+5 \mathcal{R}^{4}+8 \mathcal{R}^{5}+13 \mathcal{R}^{6}+\cdots \\
& =h[0]+h[1] \mathcal{R}+h[2] \mathcal{R}^{2}+h[3] \mathcal{R}^{3}+h[4] \mathcal{R}^{4}+\cdots \\
& =\sum_{n} h[n] \mathcal{R}^{n}
\end{aligned}
$$

## Check Yourself

## Example: Fibonacci system

difference equation
unit-sample response

$$
\begin{aligned}
& y[n]=x[n]+y[n-1]+y[n-2] \\
& Y=X+\mathcal{R} Y+\mathcal{R}^{2} Y \\
& \frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}} \\
& h[n]: 1,1,2,3,5,8,13,21,34,55,89, \ldots
\end{aligned}
$$

What is the relation between system functional and $h[n]$ ?

$$
\frac{Y}{X}=\sum_{n} h[n] \mathcal{R}^{n}
$$

## Check Yourself

## Example: Fibonacci system

difference equation

$$
\begin{aligned}
& y[n]=x[n]+y[n-1]+y[n-2] \\
& Y=X+\mathcal{R} Y+\mathcal{R}^{2} Y \\
& \frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}} \\
& h[n]: 1,1,2,3,5,8,13,21,34,55,89, \ldots
\end{aligned}
$$

operator expression
system functional
unit-sample response

$$
\frac{Y}{X}=\sum_{n} h[n] \mathcal{R}^{n}
$$

What's the relation between $H(z)$ and $h[n]$ ?

## Check Yourself

Series expansion of system functional:

$$
\frac{Y}{X}=\sum_{n} h[n] \mathcal{R}^{n}
$$

Substitute $\mathcal{R} \rightarrow \frac{1}{z}$ :

$$
H(z)=\sum_{n} h[n] z^{-n}
$$

## Check Yourself

## Example: Fibonacci system

difference equation

$$
\begin{aligned}
& y[n]=x[n]+y[n-1]+y[n-2] \\
& Y=X+\mathcal{R} Y+\mathcal{R}^{2} Y \\
& \frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}} \\
& h[n]: 1,1,2,3,5,8,13,21,34,55,89, \ldots
\end{aligned}
$$

operator expression
unit-sample response
$\frac{Y}{X}=\sum_{n} h[n] \mathcal{R}^{n}$
What's the relation between $H(z)$ and $h[n]$ ?

$$
H(z)=\sum_{n} h[n] z^{-n}
$$

## Concept Map: Discrete-Time Systems

Multiple representations of DT systems.

System Functional

$$
\frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}
$$



$$
\begin{gathered}
\text { Unit-Sample Response } \\
h[n]: 1,1,2,3,5,8,13,21,34,55, \ldots
\end{gathered}
$$

Difference Equation

$$
y[n]=x[n]+y[n-1]+y[n-2]
$$

System Function

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{z^{2}}{1-z-z^{2}}
$$

## Concept Map: Discrete-Time Systems

Relation between Unit-Sample Response and System Functional.


System Functional

$$
\frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}
$$

Unit-Sample Response

$$
h[n]: \quad 1,1,2,3,5,8,13,21,34,55, \ldots
$$

Difference Equation
$y[n]=x[n]+y[n-1]+y[n-2]$

System Function

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{z^{2}}{1-z-z^{2}}
$$

## Concept Map: Discrete-Time Systems

Relation between System Functional and System Function.


System Functional

$$
\frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}
$$

$$
\begin{array}{c|c}
\text { Unit-Sample Response } & \\
h[n]: 1,1,2,3,5,8,13,21,34,55, \ldots & \mathcal{R} \rightarrow \frac{1}{z}
\end{array}
$$

Difference Equation
$y[n]=x[n]+y[n-1]+y[n-2]$

System Function

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{z^{2}}{1-z-z^{2}}
$$

## Concept Map: Discrete-Time Systems

Relation between Unit-Sample Response and System Function.

## Block Diagram



System Functional

$$
\frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}
$$



Difference Equation
$y[n]=x[n]+y[n-1]+y[n-2]$

System Function

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{z^{2}}{1-z-z^{2}}
$$

## Check Yourself

## Example: Fibonacci system

difference equation

$$
\begin{aligned}
& y[n]=x[n]+y[n-1]+y[n-2] \\
& Y=X+\mathcal{R} Y+\mathcal{R}^{2} Y \\
& \frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}} \\
& h[n]: \quad 1,1,2,3,5,8,13,21,34,55,89, \ldots
\end{aligned}
$$

operator expression
unit-sample response
$\frac{Y}{X}=\sum_{n} h[n] \mathcal{R}^{n}$

$$
H(z)=\sum_{n} h[n] z^{-n} \quad \leftarrow \mathrm{Z} \text { transform! }
$$

## Z Transform

Z transform is discrete-time analog of Laplace transform.
$Z$ transform maps a function of discrete time $n$ to a function of $z$.

$$
X(z)=\sum_{n} x[n] z^{-n}
$$

There are two important variants:
Unilateral

$$
X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}
$$

Bilateral

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Differences are analogous to those for the Laplace transform.

## Check Yourself

Find the $Z$ transform of the unit-sample signal.


## Check Yourself

Find the $Z$ transform of the unit-sample signal.

$$
\begin{aligned}
& x[n]=\delta[n] \\
& X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=x[0] z^{0}=1
\end{aligned}
$$

$\mathcal{Z}\{\delta[n]\}=1$, analogous to $\mathcal{L}\{\delta(t)\}=1$.

## Check Yourself

Find the $Z$ transform of a delayed unit-sample signal.


## Check Yourself

Find the $Z$ transform of a delayed unit-sample signal.

$$
\begin{aligned}
& x[n]=\delta[n-1] \\
& X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=x[1] z^{-1}=z^{-1}
\end{aligned}
$$

## Z Transforms

## Example: Find the $Z$ transform of the following signal.

$$
\begin{aligned}
& x[n]=\left(\frac{7}{8}\right)^{n} u[n]
\end{aligned}
$$

$$
\begin{aligned}
& X(z)=\sum_{n=-\infty}^{\infty}\left(\frac{7}{8}\right)^{n} z^{-n} u[n]=\sum_{n=0}^{\infty}\left(\frac{7}{8}\right)^{n} z^{-n}=\frac{1}{1-\frac{7}{8} z^{-1}}=\frac{z}{z-\frac{7}{8}} \\
& \text { provided }\left|\frac{7}{8} z^{-1}\right|<1 \text {, i.e., }|z|>\frac{7}{8} \text {. }
\end{aligned}
$$

## Z Transforms

Example: Find the Z transform of the following signal.

$$
\begin{aligned}
& x[n]=\left(\frac{7}{8}\right)^{n} u[n]
\end{aligned}
$$

$$
\begin{aligned}
& X(z)=\sum_{n=-\infty}^{\infty}\left(\frac{7}{8}\right)^{n} z^{-n} u[n]=\sum_{n=0}^{\infty}\left(\frac{7}{8}\right)^{n} z^{-n}=\frac{1}{1-\frac{7}{8} z^{-1}}=\frac{z}{z-\frac{7}{8}}
\end{aligned}
$$

provided $\left|\frac{7}{8} z^{-1}\right|<1$, i.e., $|z|>\frac{7}{8}$.



## Shape of ROC

Regions of converge for $Z$ transform are delimited by circles.
Example: $x[n]=\alpha^{n} u[n]$

$$
\begin{aligned}
& X(z)=\sum_{n=-\infty}^{\infty} \alpha^{n} u[n] z^{-n}=\sum_{n=0}^{\infty} \alpha^{n} z^{-n} \\
& =\frac{1}{1-\alpha z^{-1}} ; \quad\left|\alpha z^{-1}\right|<1 \\
& =\frac{z}{z-\alpha} ; \quad|z|>|\alpha| \\
& x[n]=\alpha^{n} u[n]
\end{aligned}
$$



## Shape of ROC

Regions of converge for Laplace transform delimited by vertical lines.
Example: $x(t)=e^{\sigma t} u(t)$

$$
\begin{aligned}
X(s) & =\int_{-\infty}^{\infty} e^{\sigma t} u(t) e^{-s t} d t=\int_{0}^{\infty} e^{\sigma t} e^{-s t} d t \\
& =\frac{1}{s-\sigma} ; \quad \operatorname{Re}(s)>\operatorname{Re}(\sigma)
\end{aligned}
$$




## Distinguishing Features of Transforms

Most-important feature of Laplace transforms is the derivative rule:

$$
\begin{aligned}
& x(t) \leftrightarrow X(s) \\
& \dot{x}(t) \leftrightarrow s X(s)
\end{aligned}
$$

$\rightarrow$ allows us to use Laplace transforms to solve differential equations.

Similarly, most-important feature of $Z$ transforms is the delay rule:

$$
\begin{gathered}
x[n] \leftrightarrow X(z) \\
x[n-1] \leftrightarrow z^{-1} X(z)
\end{gathered}
$$

$\rightarrow$ allows us to use $Z$ transforms to solve difference equations.

## Distinguishing Features of Transforms

Delay property

$$
\begin{aligned}
x[n] & \leftrightarrow X(z) \\
x[n-1] & \leftrightarrow z^{-1} X(z)
\end{aligned}
$$

Proof:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Let $y[n]=x[n-1]$ then

$$
Y(z)=\sum_{n=-\infty}^{\infty} y[n] z^{-n}=\sum_{n=-\infty}^{\infty} x[n-1] z^{-n}
$$

Substitute $m=n-1$

$$
Y(z)=\sum_{m=-\infty}^{\infty} x[m] z^{-m-1}=z^{-1} X(z)
$$

## Check Yourself

What DT signal has the following $Z$ transform?

$$
\frac{z}{z-\frac{7}{8}} ; \quad|z|<\frac{7}{8}
$$



## Check Yourself

If

$$
Y(z)=\frac{z}{z-\frac{7}{8}} ; \quad|z|<\frac{7}{8}
$$

then $y[n]$ corresponds to the unit-sample response of

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{z}{z-\frac{7}{8}} .
$$

The difference equation for this system is

$$
y[n+1]-\frac{7}{8} y[n]=x[n+1] .
$$

Convergence inside $|z|=\frac{7}{8}$ corresponds to a left-sided (non-causal) response. Solve by iterating backwards in time:

$$
y[n]=\frac{8}{7}(y[n+1]-x[n+1])
$$

## Check Yourself

Solve by iterating backwards in time:

$$
y[n]=\frac{8}{7}(y[n+1]-x[n+1])
$$

Start "at rest":

| $n$ | $x[n]$ | $y[n]$ |
| :---: | :---: | :---: |
| $>0$ | 0 | 0 |
| 0 | 1 | 0 |
| -1 | 0 | $-\left(\frac{8}{7}\right)$ |
| -2 | 0 | $-\left(\frac{8}{7}\right)^{2}$ |
| -3 | 0 | $-\left(\frac{8}{7}\right)^{3}$ |
| $\cdots$ |  | $\cdots$ |
| $n$ |  | $-\left(\frac{8}{7}\right)^{-n}$ |

$$
y[n]=-\left(\frac{8}{7}\right)^{-n} ; \quad n<0=-\left(\frac{7}{8}\right)^{n} u[-1-n]
$$

## Check Yourself

Plot


## Check Yourself

What DT signal has the following Z transform?


$$
\begin{gathered}
y[n]=-\left(\frac{7}{8}\right)^{n} u[-1-n] \\
-4-\beta-2-1 \\
0
\end{gathered}
$$



## Check Yourself

Find the inverse transform of

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}
$$

given that the ROC includes the unit circle.

## Check Yourself

Find the inverse transform of

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}
$$

given that the ROC includes the unit circle.

Expand with partial fractions:

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}=\frac{1}{2 z-1}-\frac{2}{z-2}
$$

Not at standard form!

## Check Yourself

## Standard forms:



$$
\begin{gathered}
y[n]=-\left(\frac{7}{8}\right)^{n} u[-1-n] \\
-4-3-2-110 \\
0
\end{gathered}
$$



## Check Yourself

Find the inverse transform of

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}
$$

given that the ROC includes the unit circle.

Expand with partial fractions:

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}=\frac{1}{2 z-1}-\frac{2}{z-2}
$$

Not at standard form!
Expand it differently: as a standard form:

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}=\frac{2 z}{2 z-1}-\frac{z}{z-2}=\frac{z}{z-\frac{1}{2}}-\frac{z}{z-2}
$$

Standard form: a pole at $\frac{1}{2}$ and a pole at 2 .

## Check Yourself

Ratio of polynomials in $z$ :

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}=\frac{z}{z-\frac{1}{2}}-\frac{z}{z-2}
$$

- a pole at $\frac{1}{2}$ and a pole at 2 .


Region of convergence is "outside" pole at $\frac{1}{2}$ but "inside" pole at 2.

$$
x[n]=\left(\frac{1}{2}\right)^{n} u[n]+2^{n} u[-1-n]
$$

## Check Yourself

Plot.

$$
x[n]=\left(\frac{1}{2}\right)^{n} u[n]+2^{n} u[-1-n]
$$

## Check Yourself

Alternatively, stick with non-standard form:

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}=\frac{1}{2 z-1}-\frac{2}{z-2}
$$

Make it look more standard:

$$
X(z)=\frac{1}{2} z^{-1} \frac{z}{z-\frac{1}{2}}-2 z^{-1} \frac{z}{z-2}
$$

## Check Yourself

Alternatively, stick with non-standard form:

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}=\frac{1}{2 z-1}-\frac{2}{z-2}
$$

Make it look more standard:

$$
X(z)=\frac{1}{2} z^{-1} \frac{z}{z-\frac{1}{2}}-2 z^{-1} \frac{z}{z-2}
$$

Now

$$
\begin{aligned}
& x[n]=\frac{1}{2} \mathcal{R}\left\{\left(\frac{1}{2}\right)^{n} u[n]\right\}+2 \mathcal{R}\left\{+2^{n} u[-1-n]\right\} \\
&=\frac{1}{2}\left\{\left(\frac{1}{2}\right)^{n-1} u[n-1]\right\}+2\left\{+2^{n-1} u[-n]\right\} \\
&=\left\{\left(\frac{1}{2}\right)^{n} u[n-1]\right\}+\left\{+2^{n} u[-n]\right\} \\
& x[n]
\end{aligned}
$$

## Check Yourself

Alternative 3: expand as polynomials in $z^{-1}$ :

$$
\begin{aligned}
X(z) & =\frac{-3 z}{2 z^{2}-5 z+2}=\frac{-3 z^{-1}}{2-5 z^{-1}+2 z^{-2}} \\
& =\frac{2}{2-z^{-1}}-\frac{1}{1-2 z^{-1}}=\frac{1}{1-\frac{1}{2} z^{-1}}-\frac{1}{1-2 z^{-1}}
\end{aligned}
$$

Now

$$
x[n]=\left(\frac{1}{2}\right)^{n} u[n]+2^{n} u[-1-n]
$$



## Check Yourself

Find the inverse transform of

$$
X(z)=\frac{-3 z}{2 z^{2}-5 z+2}
$$

given that the ROC includes the unit circle.


## Solving Difference Equations with Z Transforms

Start with difference equation:

$$
y[n]-\frac{1}{2} y[n-1]=\delta[n]
$$

Take the $Z$ transform of this equation:

$$
Y(z)-\frac{1}{2} z^{-1} Y(z)=1
$$

Solve for $Y(z)$ :

$$
Y(z)=\frac{1}{1-\frac{1}{2} z^{-1}}
$$

Take the inverse $Z$ transform (by recognizing the form of the transform):

$$
y[n]=\left(\frac{1}{2}\right)^{n} u[n]
$$

## Inverse Z transform

The inverse $Z$ transform is defined by an integral that is not particularly easy to solve.

Formally,

$$
x[n]=\frac{1}{2 \pi j} \int_{C} X(z) z^{n-1} d s
$$

were $C$ represents a closed contour that circles the origin by running in a counterclockwise direction through the region of convergence. This integral is not generally easy to compute.

This equation can be useful to prove theorems.
There are better ways (e.g., partial fractions) to compute inverse transforms for the kinds of systems that we frequently encounter.

## Properties of Z Transforms

The use of $Z$ Transforms to solve differential equations depends on several important properties.
Property
$x[n]$
$X(z) \quad$ ROC
Linearity

$$
\begin{gathered}
a x_{1}[n]+b x_{2} \\
x[n-1]
\end{gathered}
$$

$$
a X_{1}(z)+b X_{2}(z) \supset\left(R_{1} \cap R_{2}\right)
$$

Delay

$$
z^{-1} X(z)
$$

$$
R
$$

Multiply by $n$

$$
n x[n]
$$

$$
-z \frac{d X(z)}{d z} \quad R
$$

Convolve in $n \sum_{m=-\infty}^{\infty} x_{1}[m] x_{2}[n-m] \quad X_{1}(z) X_{2}(z) \quad \supset\left(R_{1} \cap R_{2}\right)$

## Check Yourself

Find the inverse transform of $Y(z)=\left(\frac{z}{z-1}\right)^{2} ; \quad|z|>1$.

## Check Yourself

Find the inverse transform of $Y(z)=\left(\frac{z}{z-1}\right)^{2} ; \quad|z|>1$.
$y[n]$ corresponds to unit-sample response of the right-sided system

$$
\begin{aligned}
& \frac{Y}{X}=\left(\frac{z}{z-1}\right)^{2}=\left(\frac{1}{1-z^{-1}}\right)^{2}=\left(\frac{1}{1-\mathcal{R}}\right)^{2} \\
& =\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) \times\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) \\
& \begin{array}{clllll} 
& 1 & \mathcal{R} & \mathcal{R}^{2} & \mathcal{R}^{3} & \ldots \\
\hline 1 & 1 & \mathcal{R} & \mathcal{R}^{2} & \mathcal{R}^{3} & \ldots \\
\mathcal{R} & \mathcal{R} & \mathcal{R}^{2} & \mathcal{R}^{3} & \mathcal{R}^{4} & \ldots
\end{array} \\
& \begin{array}{llllll}
\mathcal{R}^{2} & \mathcal{R}^{2} & \mathcal{R}^{3} & \mathcal{R}^{4} & \mathcal{R}^{5} & \ldots
\end{array} \\
& \mathcal{R}^{3} \quad \mathcal{R}^{3} \quad \mathcal{R}^{4} \quad \mathcal{R}^{5} \quad \mathcal{R}^{6} \quad \ldots \\
& \frac{Y}{X}=1+2 \mathcal{R}+3 \mathcal{R}^{2}+4 \mathcal{R}^{3}+\cdots=\sum_{n=0}^{\infty}(n+1) \mathcal{R}^{n} \\
& y[n]=h[n]=(n+1) u[n]
\end{aligned}
$$

## Check Yourself

Table lookup method.

$$
\begin{aligned}
Y(z)=\left(\frac{z}{z-1}\right)^{2} & \leftrightarrow & y[n]=? \\
\frac{z}{z-1} & \leftrightarrow & u[n]
\end{aligned}
$$

## Properties of Z Transforms

The use of $Z$ Transforms to solve differential equations depends on several important properties.
Property
$x[n]$
$X(z) \quad$ ROC
Linearity

$$
\begin{gathered}
a x_{1}[n]+b x_{2} \\
x[n-1]
\end{gathered}
$$

$$
a X_{1}(z)+b X_{2}(z) \supset\left(R_{1} \cap R_{2}\right)
$$

Delay

$$
z^{-1} X(z)
$$

$$
R
$$

Multiply by $n$

$$
n x[n]
$$

$$
-z \frac{d X(z)}{d z} \quad R
$$

Convolve in $n \sum_{m=-\infty}^{\infty} x_{1}[m] x_{2}[n-m] \quad X_{1}(z) X_{2}(z) \quad \supset\left(R_{1} \cap R_{2}\right)$

## Check Yourself

Table lookup method.

$$
\begin{aligned}
Y(z)=\left(\frac{z}{z-1}\right)^{2} & \leftrightarrow \\
& y[n]=? \\
\frac{z}{z-1} & \leftrightarrow
\end{aligned} u[n] \quad \begin{aligned}
& 2 \\
&-z \frac{d}{d z}\left(\frac{z}{z-1}\right)=z\left(\frac{1}{z-1}\right)^{2} \leftrightarrow \\
& n u[n] \\
& z \times\left(-z \frac{d}{d z}\left(\frac{z}{z-1}\right)\right)=\left(\frac{z}{z-1}\right)^{2} \leftrightarrow(n+1) u[n+1]=(n+1) u[n]
\end{aligned}
$$

## Concept Map: Discrete-Time Systems

Relations among representations.

Block Diagram


System Functional

$$
\frac{Y}{X}=\frac{1}{1-\mathcal{R}-\mathcal{R}^{2}}
$$



Unit-Sample Response

$$
h[n]: \quad 1,1,2,3,5,8,13,21,34,55, \ldots
$$

Difference Equation

$$
y[n]=x[n]+y[n-1]+y[n-2]
$$



System Function

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{z^{2}}{1-z-z^{2}}
$$

