6.003: Signals and Systems

Relations between CT and DT: Insights from Operators and Transforms

Concept Map: Continuous-Time Systems
Relations among CT representations.

Concept Map

Relations between CT and DT representations.

Mid-term Examination \#1

Wednesday, March 3, 7:30-9:30pm, 34-101
No recitations on the day of the exam.
Coverage: Representations of CT and DT Systems Lectures 1-7
Recitations 1-8
Homeworks 1-4

Homework 4 will not collected or graded. Solutions will be posted
Closed book: 1 page of notes ($8 \frac{1}{2} \times 11$ inches; front and back).
Designed as 1-hour exam; two hours to complete.

Review sessions during open office hours.

Conflict? Contact freeman@mit.edu before Friday, Feb. 26, 5pm.

Concept Map: Discrete-Time Systems

Relations among DT representations.

Unit-Sample Response
$h[n]: 1,1,2,3,5,8,13,21,34,55, \ldots$

Difference Equation

System Function

$$
y[n]=x[n]+y[n-1]+y[n-2] \longleftrightarrow H(z)=\frac{Y(z)}{X(z)}=\frac{z^{2}}{1-z-z^{2}}
$$

First-Order CT System

Example: leaky tank.

Check Yourself

What is the "step response" of the leaky tank system?

$$
u(t) \longrightarrow \text { Leaky Tank } \rightarrow s(t)=\text { ? }
$$

1.

2.

3.

4.

5. none of the above

Forward Euler Approximation

Approximate leaky-tank response using forward Euler approach.
Substitute

$$
\begin{aligned}
x_{d}[n] & =x_{c}(n T) \\
y_{d}[n] & =y_{c}(n T) \\
\dot{y}_{c}(n T) & \approx \frac{y_{c}((n+1) T)-y_{c}(n T)}{T}=\frac{y_{d}[n+1]-y_{d}[n]}{T}
\end{aligned}
$$

into the differential equation

$$
\tau \dot{y}_{c}(t)=x_{c}(t)-y_{c}(t)
$$

to obtain

$$
\frac{\tau}{T}\left(y_{d}[n+1]-y_{d}[n]\right)=x_{d}[n]-y_{d}[n] .
$$

Solve:

$$
y_{d}[n+1]-\left(1-\frac{T}{\tau}\right) y_{d}[n]=\frac{T}{\tau} x_{d}[n]
$$

Check Yourself

DT approximation:

$$
y_{d}[n+1]-\left(1-\frac{T}{\tau}\right) y_{d}[n]=\frac{T}{\tau} x_{d}[n]
$$

Find the DT pole.

1. $z=\frac{T}{\tau}$
2. $z=1-\frac{T}{\tau}$
3. $z=\frac{\tau}{T}$
4. $z=-\frac{\tau}{T}$
5. $z=\frac{1}{1+\frac{T}{\tau}}$

Forward Euler Approximation

Approximate leaky-tank response using forward Euler approach.

Substitute

$$
\begin{aligned}
x_{d}[n] & =x_{c}(n T) \\
y_{d}[n] & =y_{c}(n T) \\
\dot{y}_{c}(n T) & \approx \frac{y_{c}((n+1) T)-y_{c}(n T)}{T}=\frac{y_{d}[n+1]-y_{d}[n]}{T}
\end{aligned}
$$

Forward Euler Approximation

Plot.

Why is this approximation badly behaved?

Dependence of DT pole on Stepsize

$\frac{T}{\tau}=0.1$

$\frac{T}{\tau}=0.3$

$\frac{T}{\tau}=1$

$\frac{T}{\tau}=1.5$

$$
\frac{T}{\tau}=2
$$

The CT pole was fixed $\left(s=-\frac{1}{\tau}\right)$. Why is the DT pole changing?

Dependence of DT pole on Stepsize

Change in DT pole: problem specific or property of forward Euler?
Approach: make a systems model of forward Euler method.
CT block diagrams: adders, gains, and integrators:

$$
X \rightarrow \mathcal{A} \rightarrow Y
$$

$$
\dot{y}(t)=x(t)
$$

Forward Euler approximation:

$$
\frac{y[n+1]-y[n]}{T}=x[n]
$$

Equivalent system:

Forward Euler: substitute equivalent system for all integrators.

Model of Forward Euler Method

Replace every integrator in the CT system

$$
X \rightarrow \mathcal{A} \longrightarrow Y
$$

with the forward Euler model:

Substitute the DT operator for \mathcal{A} :

$$
\mathcal{A}=\frac{1}{s} \rightarrow \frac{T \mathcal{R}}{1-\mathcal{R}}=\frac{\frac{T}{z}}{1-\frac{1}{z}}=\frac{T}{z-1}
$$

Forward Euler maps $s \rightarrow \frac{z-1}{T}$.
Or equivalently: $z=1+s T$.

Forward Euler: Mapping CT poles to DT poles

Forward Euler Map:

s	\rightarrow	$z=1+s T$
0	1	
$-\frac{1}{T}$	0	
$-\frac{2}{T}$		-1

DT stability: CT pole must be inside circle of radius $\frac{1}{T}$ at $s=-\frac{1}{T}$.

$$
-\frac{2}{T}<-\frac{1}{\tau}<0 \quad \rightarrow \quad \frac{T}{\tau}<2
$$

Example: leaky tank system

Started with leaky tank system:

Replace integrator with forward Euler rule:

Write system functional:

$$
\frac{Y}{X}=\frac{\frac{T}{\tau} \frac{\mathcal{R}}{1-\mathcal{R}}}{1+\frac{T}{\tau} \frac{\mathcal{R}}{1-\mathcal{R}}}=\frac{\frac{T}{\tau} \mathcal{R}}{1-\mathcal{R}+\frac{T}{\tau} \mathcal{R}}=\frac{\frac{T}{\tau} \mathcal{R}}{1-\left(1-\frac{T}{\tau}\right) \mathcal{R}}
$$

Equivalent to system we previously developed:

$$
y_{d}[n+1]-\left(1-\frac{T}{\tau}\right) y_{d}[n]=\frac{T}{\tau} x_{d}[n]
$$

Dependence of DT pole on Stepsize

Pole at $z=1-\frac{T}{\tau}=1+s T$.

Backward Euler Approximation

We can do a similar analysis of the backward Euler method.
Substitute

$$
\begin{aligned}
& x_{d}[n]=x_{c}(n T) \\
& y_{d}[n]=y_{c}(n T) \\
& \dot{y}_{c}(n T) \approx \frac{y_{c}(n T)-y_{c}((n-1) T)}{T}=\frac{y_{d}[n]-y_{d}[n-1]}{T} \\
& \begin{array}{c}
y_{c}(n T)=y_{d}[n] \\
\dot{y}_{c}(n T)=\frac{y_{d}[n]-y_{d}[n-1]}{T} \\
y_{c}(n-1) T \\
y_{d}[n-1]
\end{array}
\end{aligned}
$$

Backward Euler Approximation

We can do a similar analysis of the backward Euler method.
Substitute

$$
\begin{aligned}
x_{d}[n] & =x_{c}(n T) \\
y_{d}[n] & =y_{c}(n T) \\
\dot{y}_{c}(n T) & \approx \frac{y_{c}(n T)-y_{c}((n-1) T)}{T}=\frac{y_{d}[n]-y_{d}[n-1]}{T}
\end{aligned}
$$

into the differential equation

$$
\tau \dot{y}_{c}(t)=x_{c}(t)-y_{c}(t)
$$

to obtain

$$
\frac{\tau}{T}\left(y_{d}[n]-y_{d}[n-1]\right)=x_{d}[n]-y_{d}[n] .
$$

Solve:

$$
\left(1+\frac{T}{\tau}\right) y_{d}[n]-y_{d}[n-1]=\frac{T}{\tau} x_{d}[n]
$$

Check Yourself

DT approximation:

$$
\left(1+\frac{T}{\tau}\right) y_{d}[n]-y_{d}[n-1]=\frac{T}{\tau} x_{d}[n]
$$

Find the DT pole.

1. $z=\frac{T}{\tau}$
2. $z=1-\frac{T}{\tau}$
3. $z=\frac{\tau}{T}$
4. $z=-\frac{\tau}{T}$
5. $z=\frac{1}{1+\frac{T}{\tau}}$

Dependence of DT pole on Stepsize

Make a systems model of backward Euler method.
CT block diagrams: adders, gains, and integrators:

$$
X \rightarrow \mathcal{A} \longrightarrow Y
$$

$$
\dot{y}(t)=x(t)
$$

Backward Euler approximation:

$$
\frac{y[n]-y[n-1]}{T}=x[n]
$$

Equivalent system:

Backward Euler: substitute equivalent system for all integrators.

Backward Euler Approximation
Plot.

This approximation is better behaved. Why?

Dependence of DT pole on Stepsize

$\frac{T}{\tau}=0.1$
$\frac{T}{\tau}=0.3$
$\frac{T}{\tau}=1$

$\frac{T}{\tau}=1.5$

$$
\frac{T}{\tau}=2
$$

Why is this approximation better behaved?

Model of Backward Euler Method

Replace every integrator in the $C T$ system

$$
X \rightarrow \mathcal{A} \rightarrow Y
$$

with the backward Euler model:

Substitute the DT operator for \mathcal{A} :

$$
\mathcal{A}=\frac{1}{s} \rightarrow \frac{T}{1-\mathcal{R}}=\frac{T}{1-\frac{1}{z}}
$$

Backward Euler maps $z \rightarrow \frac{1}{1-s T}$.

Dependence of DT pole on Stepsize
Pole at $z=\frac{1}{1+\frac{T}{\tau}}=\frac{1}{1-s T}$.

$\frac{T}{\tau}=0.1$

$\frac{T}{\tau}=0.3$

$\frac{T}{\tau}=1$

$\frac{T}{\tau}=1.5$

$$
\frac{T}{\tau}=2
$$

Masses and Springs, Forwards and Backwards

In Homework 2, you investigated three numerical approximations to a mass and spring system:

- forward Euler
- backward Euler
- centered method

Trapezoidal Rule

The trapezoidal rule uses centered differences.

$$
\dot{y}(t)=x(t)
$$

Trapezoidal rule:

$$
\frac{y[n]-y[n-1]}{T}=\frac{x[n]+x[n-1]}{2}
$$

Z transform:

$$
H(z)=\frac{Y(s)}{X(s)}=\frac{T}{2}\left(\frac{1+z^{-1}}{1-z^{-1}}\right)=\frac{T}{2}\left(\frac{z+1}{z-1}\right)
$$

Map:

$$
\mathcal{A}=\frac{1}{s} \rightarrow \frac{T}{2}\left(\frac{z+1}{z-1}\right)
$$

Trapezoidal rule maps $z \rightarrow \frac{1+\frac{s T}{2}}{1-\frac{s T}{2}}$.

Backward Euler: Mapping CT poles to DT poles

Backward Euler Map:

s	\rightarrow	$z=\frac{1}{1-s T}$
0	1	
$-\frac{1}{T}$		$\frac{1}{2}$
$-\frac{2}{T}$	$\frac{1}{3}$	

The entire left half-plane maps inside a circle with radius $\frac{1}{2}$ at $z=\frac{1}{2}$. If CT system is stable, then DT system is also stable.

Trapezoidal Rule

The trapezoidal rule uses centered differences.

$$
\dot{y}(t)=x(t)
$$

Trapezoidal rule:

$$
\frac{y[n]-y[n-1]}{T}=\frac{x[n]+x[n-1]}{2}
$$

$$
y_{c}\left(\left(n+\frac{1}{2}\right) T\right)=\frac{y_{d}[n]+y_{d}[n-1]}{2}
$$

$$
\dot{y}_{c}\left(\left(n+\frac{1}{2}\right) T\right)=\frac{y_{d}[n]-y_{d}[n-1]}{T}
$$

Trapezoidal Rule: Mapping CT poles to D T poles

Trapezoidal Map:

s	\rightarrow
0	$z=\frac{1+\frac{s T}{2}}{1-\frac{s T}{2}}$
$-\frac{1}{T}$	1
$-\frac{2}{T}$	$\frac{1}{3}$
$-\infty$	0
$j \omega$	-1
	$\frac{2+j \omega T}{2-j \omega T}$

The entire left-half plane maps inside the unit circle.
The $j \omega$ axis maps onto the unit circle

Mapping s to z: Leaky-Tank System

Mapping s to z: Mass and Spring System

Mapping s to z: Mass and Spring System

Trapezoidal Rule

Concept Map

Relations between CT and DT representations.

