
6.003: Signals and Systems

Relations between CT and DT:

Insights from Operators and Transforms

February 25, 2010



Mid-term Examination #1

Wednesday, March 3, 7:30-9:30pm, 34-101.

No recitations on the day of the exam.

Coverage: Representations of CT and DT Systems

Lectures 1–7

Recitations 1–8

Homeworks 1–4

Homework 4 will not collected or graded. Solutions will be posted.

Closed book: 1 page of notes (81
2 × 11 inches; front and back).

Designed as 1-hour exam; two hours to complete.

Review sessions during open office hours.

Conflict? Contact freeman@mit.edu before Friday, Feb. 26, 5pm.



Concept Map: Continuous-Time Systems

Relations among CT representations.

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX



Concept Map: Discrete-Time Systems

Relations among DT representations.

Block Diagram System Functional

Difference Equation System Function

Unit-Sample Response

+

Delay

+

Delay

X Y Y

X
= 1

1−R−R2

y[n] = x[n] + y[n−1] + y[n−2] H(z) = Y (z)
X(z)

= z2

1− z − z2

h[n] : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .index shift

∫
Delay → R



Concept Map

Relations between CT and DT representations.

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+
∫

1

+
∫

1
2

X Y− − Y

X
= 2A2

2 + 3A+A2

2ÿ(t) + 3ẏ(t) + y(t) = 2x(t) Y (s)
X(s)

= 2
2s2 + 3s+ 1

h(t) = 2(e−t/2 − e−t)u(t)
∫

ẋ(t) x(t)

∫
X AX

Block Diagram System Functional

Difference Equation System Function

Unit-Sample Response

+

Delay

+

Delay

X Y Y

X
= 1

1−R−R2

y[n] = x[n] + y[n−1] + y[n−2] H(z) = Y (z)
X(z)

= z2

1− z − z2

h[n] : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .index shift

∫
Delay → R

CT

DT

CT

DT



First-Order CT System

Example: leaky tank.
r0(t)

r1(t)
h1(t)

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+ 1
τ

∫
X Y

−
Y

X
= A
A+ τ

τ ṙ1(t) = r0(t)− r1(t) H(s) = Y (s)
X(s)

= 1
1 + τs

h(t) = 1
τ e
−t/τu(t)

∫
ẋ(t) x(t)

∫
X AX



Check Yourself

What is the “step response” of the leaky tank system?

Leaky Tanku(t) s(t) =?

t

1

τ

1.
t

1

τ

2.

t

1

τ

3.
t

1

τ

4.

5. none of the above



Check Yourself

What is the “step response” of the leaky tank system?

H(s)δ(t) h(t) = 1
τ e
−t/τu(t)

H(s)u(t) s(t) =?

1
s H(s)δ(t)
u(t)

s(t) =?

H(s) 1
sδ(t)

h(t)
s(t) =

∫ t
−∞
h(t′)dt′

s(t) =
∫ t
−∞

1
τ
e−t
′/τu(t′)dt′ =

∫ t
0

1
τ
e−t
′/τdt′ = (1− e−t/τ )u(t)

Reasoning with systems.



Check Yourself

What is the “step response” of the leaky tank system? 2

Leaky Tanku(t) s(t) =?

t

1

τ

1.
t

1

τ

2.

t

1

τ

3.
t

1

τ

4.

5. none of the above



Forward Euler Approximation

Approximate leaky-tank response using forward Euler approach.

Substitute

xd[n] = xc(nT )

yd[n] = yc(nT )

ẏc(nT ) ≈
yc
(
(n+ 1)T

)
− yc
(
nT
)

T
= yd[n+ 1]− yd[n]

T

t
nT (n+1)T

yd[n]
yd[n+1]

yc(nT ) = yd[n]

ẏc(nT ) = yd[n+1]− yd[n]
T

yc(t)



Forward Euler Approximation

Approximate leaky-tank response using forward Euler approach.

Substitute

xd[n] = xc(nT )

yd[n] = yc(nT )

ẏc(nT ) ≈
yc
(
(n+ 1)T

)
− yc
(
nT
)

T
= yd[n+ 1]− yd[n]

T

into the differential equation

τ ẏc(t) = xc(t)− yc(t)

to obtain
τ

T

(
yd[n+ 1]− yd[n]

)
= xd[n]− yd[n] .

Solve:

yd[n+ 1]−
(

1− T
τ

)
yd[n] = T

τ
xd[n]



Forward Euler Approximation

Plot.

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

Why is this approximation badly behaved?



Check Yourself

DT approximation:

yd[n+ 1]−
(

1− T
τ

)
yd[n] = T

τ
xd[n]

Find the DT pole.

1. z = T
τ

2. z = 1− T
τ

3. z = τ
T

4. z = − τ
T

5. z = 1
1 + Tτ



Check Yourself

DT approximation:

yd[n+ 1]−
(

1− T
τ

)
yd[n] = T

τ
xd[n]

Take the Z transform:

zYd(z)−
(

1− T
τ

)
Yd(z) = T

τ
Xd(z)

Solve for the system function:

H(z) = Yd(z)
Xd(z)

=
T
τ

z −
(

1− Tτ
)

Pole at z = 1− T
τ
.



Check Yourself

DT approximation:

yd[n+ 1]−
(

1− T
τ

)
yd[n] = T

τ
xd[n]

Find the DT pole. 2

1. z = T
τ

2. z = 1− T
τ

3. z = τ
T

4. z = − τ
T

5. z = 1
1 + Tτ



Dependence of DT pole on Stepsize

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

z

z

z

z

z

The CT pole was fixed (s = − 1
τ ). Why is the DT pole changing?



Dependence of DT pole on Stepsize

Change in DT pole: problem specific or property of forward Euler?



Dependence of DT pole on Stepsize

Change in DT pole: problem specific or property of forward Euler?

Approach: make a systems model of forward Euler method.

CT block diagrams: adders, gains, and integrators:

AX Y

ẏ(t) = x(t)

Forward Euler approximation:

y[n+ 1]− y[n]
T

= x[n]

Equivalent system:

T + RX Y

Forward Euler: substitute equivalent system for all integrators.



Example: leaky tank system

Started with leaky tank system:

+ 1
τ

∫
X Y

−

Replace integrator with forward Euler rule:

+ 1
τ T + RX Y

−

Write system functional:

Y

X
=

T
τ
R

1−R
1 + Tτ

R
1−R

=
T
τ R

1−R+ Tτ R
=

T
τ R

1−
(

1− Tτ
)
R

Equivalent to system we previously developed:

yd[n+ 1]−
(

1− T
τ

)
yd[n] = T

τ
xd[n]



Model of Forward Euler Method

Replace every integrator in the CT system

AX Y

with the forward Euler model:

T + RX Y

Substitute the DT operator for A:

A = 1
s
→ TR

1−R
=

T
z

1− 1
z

= T

z − 1

Forward Euler maps s→ z − 1
T

.

Or equivalently: z = 1 + sT .



Dependence of DT pole on Stepsize

Pole at z = 1− Tτ = 1 + sT .

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

z

z

z

z

z



Forward Euler: Mapping CT poles to DT poles

Forward Euler Map:

s → z = 1 + sT

0 1

− 1
T 0

− 2
T −1

1
T

− 1
T− 2

T

s

z → 1 + sT 1−1

z

DT stability: CT pole must be inside circle of radius 1
T at s = − 1

T .

− 2
T
< −1
τ
< 0 → T

τ
< 2



Backward Euler Approximation

We can do a similar analysis of the backward Euler method.

Substitute

xd[n] = xc(nT )

yd[n] = yc(nT )

ẏc(nT ) ≈
yc
(
nT
)
− yc
(
(n− 1)T

)
T

= yd[n]− yd[n− 1]
T

t
(n−1)T nT

yd[n−1]
yd[n]

yc(nT ) = yd[n]

ẏc(nT ) = yd[n]− yd[n−1]
T

yc(t)



Backward Euler Approximation

We can do a similar analysis of the backward Euler method.

Substitute

xd[n] = xc(nT )

yd[n] = yc(nT )

ẏc(nT ) ≈
yc
(
nT
)
− yc
(
(n− 1)T

)
T

= yd[n]− yd[n− 1]
T

into the differential equation

τ ẏc(t) = xc(t)− yc(t)

to obtain
τ

T

(
yd[n]− yd[n− 1]

)
= xd[n]− yd[n] .

Solve:(
1 + T
τ

)
yd[n]− yd[n− 1] = T

τ
xd[n]



Backward Euler Approximation

Plot.

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

This approximation is better behaved. Why?



Check Yourself

DT approximation:(
1 + T
τ

)
yd[n]− yd[n− 1] = T

τ
xd[n]

Find the DT pole.

1. z = T
τ

2. z = 1− T
τ

3. z = τ
T

4. z = − τ
T

5. z = 1
1 + Tτ



Check Yourself

DT approximation:(
1 + T
τ

)
yd[n]− yd[n− 1] = T

τ
xd[n]

Take the Z transform:(
1 + T
τ

)
Yd(z)− z−1Yd(z) = T

τ
Xd(z)

Find the system function:

H(z) = Yd(z)
Xd(z)

=
T
τ z(

1 + Tτ
)
z − 1

Pole at z = 1
1 + Tτ

.



Check Yourself

DT approximation:

yd[n+ 1]−
(

1− T
τ

)
yd[n] = T

τ
xd[n]

Find the DT pole. 5

1. z = T
τ

2. z = 1− T
τ

3. z = τ
T

4. z = − τ
T

5. z = 1
1 + Tτ



Dependence of DT pole on Stepsize

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

z

z

z

z

z

Why is this approximation better behaved?



Dependence of DT pole on Stepsize

Make a systems model of backward Euler method.

CT block diagrams: adders, gains, and integrators:

AX Y

ẏ(t) = x(t)

Backward Euler approximation:

y[n]− y[n− 1]
T

= x[n]

Equivalent system:

T +

R

X Y

Backward Euler: substitute equivalent system for all integrators.



Model of Backward Euler Method

Replace every integrator in the CT system

AX Y

with the backward Euler model:

T +

R

X Y

Substitute the DT operator for A:

A = 1
s
→ T

1−R
= T

1− 1
z

Backward Euler maps z → 1
1− sT

.



Dependence of DT pole on Stepsize

Pole at z = 1
1+Tτ

= 1
1−sT .

t

1
T
τ = 0.1

t

1
T
τ = 0.3

t

1
T
τ = 1

t

1
T
τ = 1.5

t

1
T
τ = 2

τ

z

z

z

z

z



Backward Euler: Mapping CT poles to DT poles

Backward Euler Map:

s → z = 1
1−sT

0 1

− 1
T

1
2

− 2
T

1
3

0

s

z → 1
1−sT

1−1

z

The entire left half-plane maps inside a circle with radius 1
2 at z = 1

2 .

If CT system is stable, then DT system is also stable.



Masses and Springs, Forwards and Backwards

In Homework 2, you investigated three numerical approximations to

a mass and spring system:

• forward Euler

• backward Euler

• centered method

x(t)

y(t)



Trapezoidal Rule

The trapezoidal rule uses centered differences.

ẏ(t) = x(t)

Trapezoidal rule:
y[n]− y[n− 1]

T
= x[n] + x[n− 1]

2

t
(n−1)T nT

yd[n−1]
yd[n]

yc

((
n+ 1

2
)
T
)

= yd[n] + yd[n−1]
2

ẏc

((
n+ 1

2
)
T
)

= yd[n]− yd[n−1]
T

yc(t)



Trapezoidal Rule

The trapezoidal rule uses centered differences.

ẏ(t) = x(t)

Trapezoidal rule:
y[n]− y[n− 1]

T
= x[n] + x[n− 1]

2
Z transform:

H(z) = Y (s)
X(s)

= T
2

(
1 + z−1

1− z−1

)
= T

2

(
z + 1
z − 1

)
Map:

A = 1
s
→ T

2

(
z + 1
z − 1

)

Trapezoidal rule maps z →
1 + sT2
1− sT2

.



Trapezoidal Rule: Mapping CT poles to DT poles

Trapezoidal Map:

s → z = 1+ sT2
1− sT2

0 1

− 1
T

1
3

− 2
T 0

−∞ −1

jω 2+jωT
2−jωT

0

s

z → 2+sT
2−sT

1−1

z

The entire left-half plane maps inside the unit circle.

The jω axis maps onto the unit circle



Mapping s to z: Leaky-Tank System

Forward Euler Method
1
T

− 1
T− 2

T

s

z → 1 + sT 1−1

z

Backward Euler Method

0

s

z → 1
1−sT

1−1

z

Trapezoidal Rule

0

s

z → 2+sT
2−sT

1−1

z



Mapping s to z: Mass and Spring System

Forward Euler Method
1
T

− 1
T− 2

T

s

z → 1 + sT 1−1

z

Backward Euler Method

0

s

z → 1
1−sT

1−1

z

Trapezoidal Rule

0

s

z → 2+sT
2−sT

1−1

z



Mapping s to z: Mass and Spring System

Forward Euler Method
1
T

− 1
T− 2

T

s

z → 1 + sT 1−1

z

Backward Euler Method

0

s

z → 1
1−sT

1−1

z

Trapezoidal Rule

0

s

z → 2+sT
2−sT

1−1

z



Concept Map

Relations between CT and DT representations.

Block Diagram System Functional

Differential Equation System Function

Impulse Response

+ 1
τ

∫
X Y

−
Y

X
= A
A+ τ

τ ṙ1(t) = r0(t)− r1(t) H(s) = Y (s)
X(s)

= 1
1 + τs

h(t) = 1
τ e
−t/τu(t)

∫
ẋ(t) x(t)

∫
X AX

Block Diagram System Functional

Difference Equation System Function

Unit-Sample Response

+

Delay

+

Delay

X Y Y

X
= 1

1−R−R2

y[n] = x[n] + y[n−1] + y[n−2] H(z) = Y (z)
X(z)

= z2

1− z − z2

h[n] : 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .index shift

∫
Delay → R

CT

DT

CT

DT


