6.003: Signals and Systems

Relations between CT and DT: Insights from Operators and Transforms

February 25, 2010

Mid-term Examination #1

Wednesday, March 3, 7:30-9:30pm, 34-101.

No recitations on the day of the exam.

Coverage: Representations of CT and DT Systems Lectures 1–7 Recitations 1–8 Homeworks 1–4

Homework 4 will not collected or graded. Solutions will be posted.

Closed book: 1 page of notes $(8\frac{1}{2} \times 11 \text{ inches}; \text{ front and back}).$

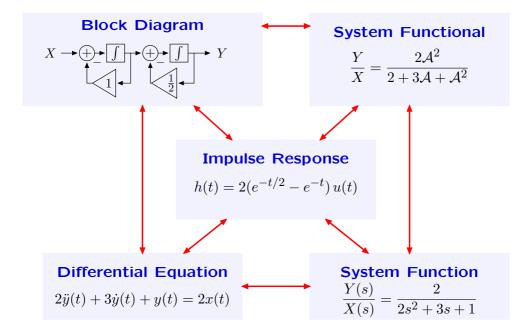
Designed as 1-hour exam; two hours to complete.

Review sessions during open office hours.

Conflict? Contact freeman@mit.edu before Friday, Feb. 26, 5pm.

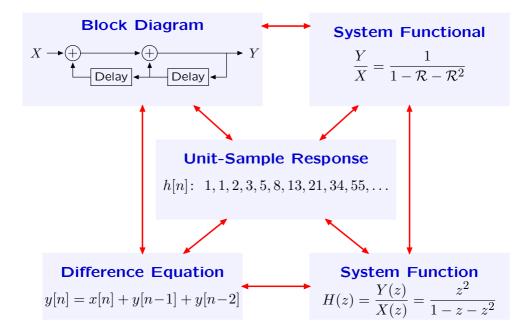
Concept Map: Continuous-Time Systems

Relations among CT representations.



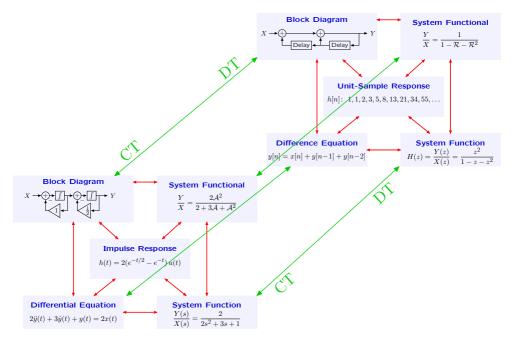
Concept Map: Discrete-Time Systems

Relations among DT representations.



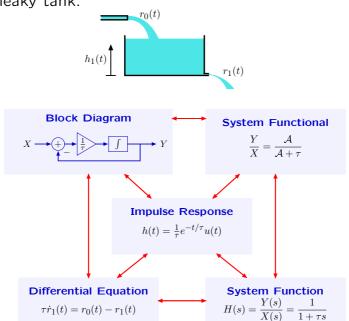
Concept Map

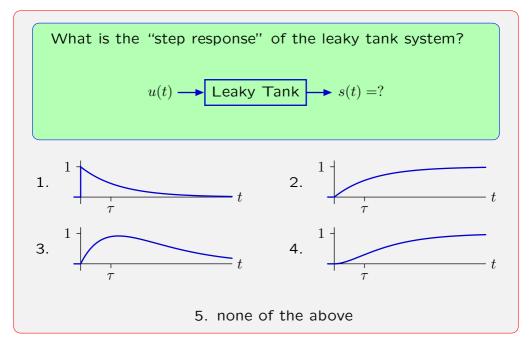
Relations between CT and DT representations.



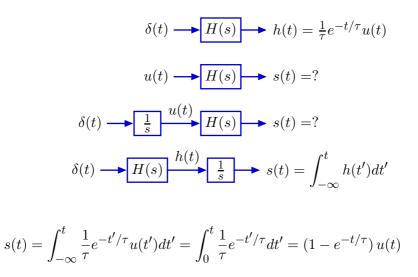
First-Order CT System

Example: leaky tank.

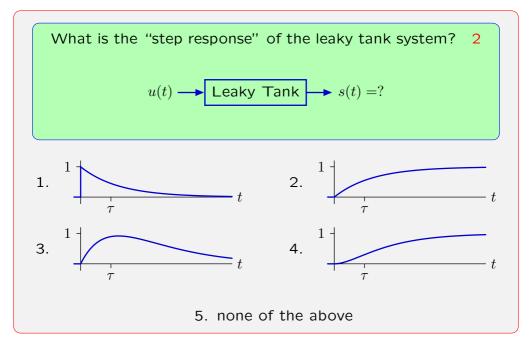




What is the "step response" of the leaky tank system?



Reasoning with systems.

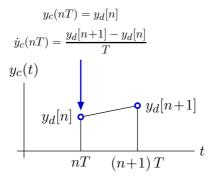


Forward Euler Approximation

Approximate leaky-tank response using forward Euler approach.

Substitute

$$\begin{aligned} x_d[n] &= x_c(nT) \\ y_d[n] &= y_c(nT) \\ \dot{y}_c(nT) \approx \frac{y_c((n+1)T) - y_c(nT)}{T} = \frac{y_d[n+1] - y_d[n]}{T} \end{aligned}$$



Forward Euler Approximation

Approximate leaky-tank response using forward Euler approach.

Substitute

$$\begin{aligned} x_d[n] &= x_c(nT) \\ y_d[n] &= y_c(nT) \\ \dot{y}_c(nT) \approx \frac{y_c\big((n+1)T\big) - y_c\big(nT\big)}{T} = \frac{y_d[n+1] - y_d[n]}{T} \end{aligned}$$

into the differential equation

$$\tau \dot{y}_c(t) = x_c(t) - y_c(t)$$

to obtain

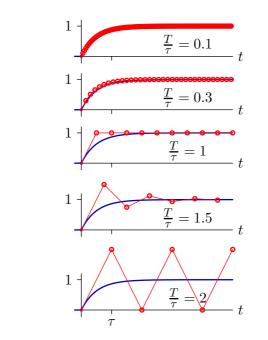
$$\frac{\tau}{T}\left(y_d[n+1] - y_d[n]\right) = x_d[n] - y_d[n].$$

Solve:

$$y_d[n+1] - \left(1 - \frac{T}{\tau}\right)y_d[n] = \frac{T}{\tau}x_d[n]$$

Forward Euler Approximation

Plot.



Why is this approximation badly behaved?

DT approximation:

$$y_d[n+1] - \left(1 - \frac{T}{\tau}\right)y_d[n] = \frac{T}{\tau}x_d[n]$$

Find the DT pole.

1.
$$z = \frac{T}{\tau}$$

3. $z = \frac{\tau}{T}$
5. $z = \frac{1}{1 + \frac{T}{\tau}}$
2. $z = 1 - \frac{T}{\tau}$
4. $z = -\frac{\tau}{T}$

DT approximation:

$$y_d[n+1] - \left(1 - \frac{T}{\tau}\right) y_d[n] = \frac{T}{\tau} x_d[n]$$

Take the Z transform:

$$zY_d(z) - \left(1 - \frac{T}{\tau}\right)Y_d(z) = \frac{T}{\tau}X_d(z)$$

Solve for the system function:

$$H(z) = \frac{Y_d(z)}{X_d(z)} = \frac{\frac{T}{\tau}}{z - \left(1 - \frac{T}{\tau}\right)}$$

Pole at $z = 1 - \frac{T}{\tau}$.

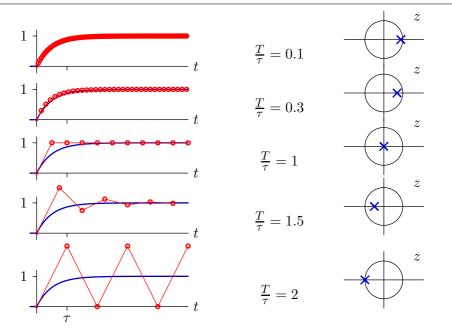
DT approximation:

$$y_d[n+1] - \left(1 - \frac{T}{\tau}\right)y_d[n] = \frac{T}{\tau}x_d[n]$$

Find the DT pole. 2

1.
$$z = \frac{T}{\tau}$$

3. $z = \frac{\tau}{T}$
5. $z = \frac{1}{1 + \frac{T}{\tau}}$
2. $z = 1 - \frac{T}{\tau}$
4. $z = -\frac{\tau}{T}$



The CT pole was fixed $(s = -\frac{1}{\tau})$. Why is the DT pole changing?

Change in DT pole: problem specific or property of forward Euler?

Change in DT pole: problem specific or property of forward Euler?

Approach: make a systems model of forward Euler method.

CT block diagrams: adders, gains, and integrators:

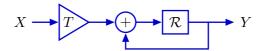
$$X \longrightarrow \mathcal{A} \longrightarrow Y$$

 $\dot{y}(t) = x(t)$

Forward Euler approximation:

$$\frac{y[n+1] - y[n]}{T} = x[n]$$

Equivalent system:

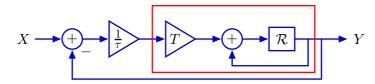


Forward Euler: substitute equivalent system for all integrators.

Example: leaky tank system

Started with leaky tank system:

Replace integrator with forward Euler rule:



Write system functional:

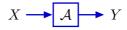
$$\frac{Y}{X} = \frac{\frac{T}{\tau} \frac{\mathcal{R}}{1-\mathcal{R}}}{1 + \frac{T}{\tau} \frac{\mathcal{R}}{1-\mathcal{R}}} = \frac{\frac{T}{\tau} \mathcal{R}}{1 - \mathcal{R} + \frac{T}{\tau} \mathcal{R}} = \frac{\frac{T}{\tau} \mathcal{R}}{1 - \left(1 - \frac{T}{\tau}\right) \mathcal{R}}$$

Equivalent to system we previously developed:

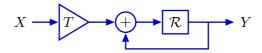
$$y_d[n+1] - \left(1 - \frac{T}{\tau}\right)y_d[n] = \frac{T}{\tau}x_d[n]$$

Model of Forward Euler Method

Replace every integrator in the CT system



with the forward Euler model:



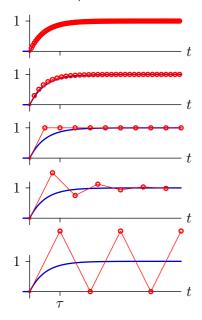
Substitute the DT operator for \mathcal{A} :

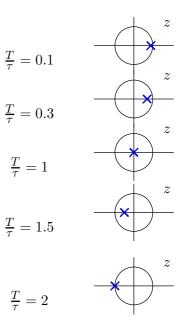
$$\mathcal{A} = \frac{1}{s} \to \frac{T\mathcal{R}}{1 - \mathcal{R}} = \frac{\frac{T}{z}}{1 - \frac{1}{z}} = \frac{T}{z - 1}$$

Forward Euler maps $s \rightarrow \frac{z-1}{T}$.

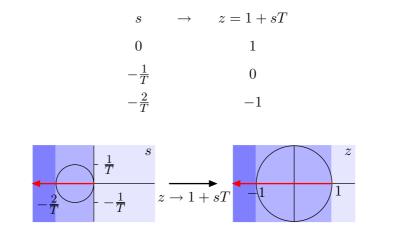
Or equivalently: z = 1 + sT.

Pole at $z = 1 - \frac{T}{\tau} = 1 + sT$.





Forward Euler Map:



DT stability: CT pole must be inside circle of radius $\frac{1}{T}$ at $s = -\frac{1}{T}$.

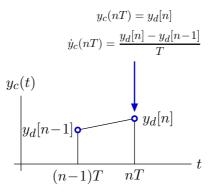
$$-\frac{2}{T} < -\frac{1}{\tau} < 0 \quad \rightarrow \quad \frac{T}{\tau} < 2$$

Backward Euler Approximation

We can do a similar analysis of the backward Euler method.

Substitute

$$\begin{aligned} x_d[n] &= x_c(nT) \\ y_d[n] &= y_c(nT) \\ \dot{y}_c(nT) \approx \frac{y_c(nT) - y_c((n-1)T)}{T} = \frac{y_d[n] - y_d[n-1]}{T} \end{aligned}$$



Backward Euler Approximation

We can do a similar analysis of the backward Euler method.

Substitute

$$\begin{aligned} x_d[n] &= x_c(nT) \\ y_d[n] &= y_c(nT) \\ \dot{y}_c(nT) \approx \frac{y_c(nT) - y_c((n-1)T)}{T} = \frac{y_d[n] - y_d[n-1]}{T} \end{aligned}$$

into the differential equation

$$\tau \dot{y}_c(t) = x_c(t) - y_c(t)$$

to obtain

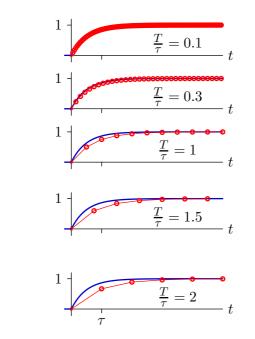
$$\frac{\tau}{T}\left(y_d[n] - y_d[n-1]\right) = x_d[n] - y_d[n].$$

Solve:

$$\left(1+\frac{T}{\tau}\right)y_d[n] - y_d[n-1] = \frac{T}{\tau}x_d[n]$$

Backward Euler Approximation

Plot.



This approximation is better behaved. Why?

DT approximation:

$$\left(1+\frac{T}{\tau}\right)y_d[n] - y_d[n-1] = \frac{T}{\tau}x_d[n]$$

Find the DT pole.

1.
$$z = \frac{T}{\tau}$$

2. $z = 1 - \frac{T}{\tau}$
3. $z = \frac{\tau}{T}$
4. $z = -\frac{\tau}{T}$
5. $z = \frac{1}{1 + \frac{T}{\tau}}$

DT approximation:

$$\left(1+\frac{T}{\tau}\right)y_d[n] - y_d[n-1] = \frac{T}{\tau}x_d[n]$$

Take the Z transform:

$$\left(1+\frac{T}{\tau}\right)Y_d(z) - z^{-1}Y_d(z) = \frac{T}{\tau}X_d(z)$$

Find the system function:

$$H(z) = \frac{Y_d(z)}{X_d(z)} = \frac{\frac{T}{\tau}z}{\left(1 + \frac{T}{\tau}\right)z - 1}$$

Pole at $z = \frac{1}{1 + \frac{T}{\tau}}$.

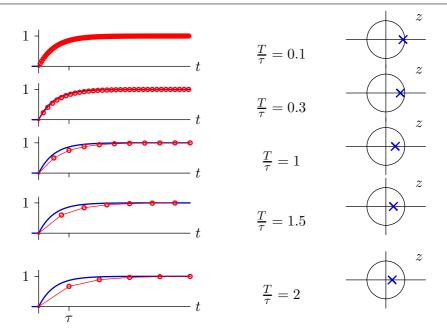
DT approximation:

$$y_d[n+1] - \left(1 - \frac{T}{\tau}\right)y_d[n] = \frac{T}{\tau}x_d[n]$$

Find the DT pole. 5

1.
$$z = \frac{T}{\tau}$$

3. $z = \frac{\tau}{T}$
5. $z = \frac{1}{1 + \frac{T}{\tau}}$
2. $z = 1 - \frac{T}{\tau}$
4. $z = -\frac{\tau}{T}$



Why is this approximation better behaved?

Make a systems model of backward Euler method.

CT block diagrams: adders, gains, and integrators:

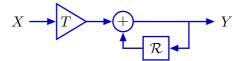
$$X \longrightarrow A \longrightarrow Y$$

 $\dot{y}(t) = x(t)$

Backward Euler approximation:

$$\frac{y[n] - y[n-1]}{T} = x[n]$$

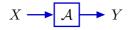
Equivalent system:



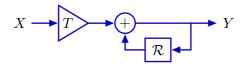
Backward Euler: substitute equivalent system for all integrators.

Model of Backward Euler Method

Replace every integrator in the CT system



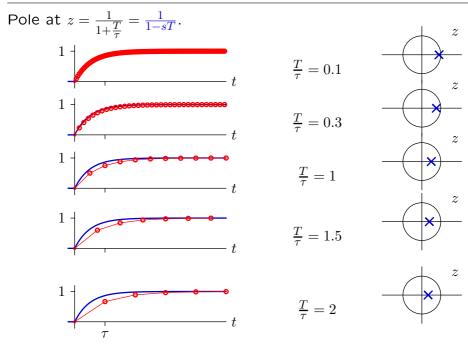
with the backward Euler model:



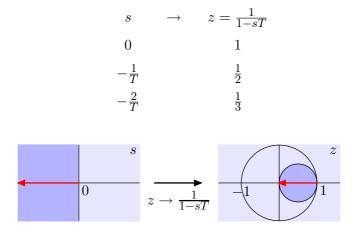
Substitute the DT operator for \mathcal{A} :

$$\mathcal{A} = \frac{1}{s} \to \frac{T}{1 - \mathcal{R}} = \frac{T}{1 - \frac{1}{z}}$$

Backward Euler maps $z \to \frac{1}{1 - sT}$.



Backward Euler Map:

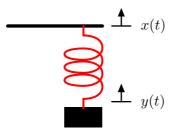


The entire left half-plane maps inside a circle with radius $\frac{1}{2}$ at $z = \frac{1}{2}$. If CT system is stable, then DT system is also stable.

Masses and Springs, Forwards and Backwards

In Homework 2, you investigated three numerical approximations to a mass and spring system:

- forward Euler
- backward Euler
- centered method



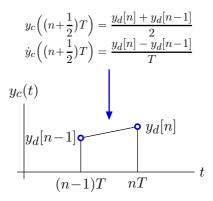
Trapezoidal Rule

The trapezoidal rule uses centered differences.

 $\dot{y}(t) = x(t)$

Trapezoidal rule:

$$\frac{y[n] - y[n-1]}{T} = \frac{x[n] + x[n-1]}{2}$$



Trapezoidal Rule

The trapezoidal rule uses centered differences.

 $\dot{y}(t) = x(t)$

Trapezoidal rule:

$$\frac{y[n] - y[n-1]}{T} = \frac{x[n] + x[n-1]}{2}$$

Z transform:

$$H(z) = \frac{Y(s)}{X(s)} = \frac{T}{2} \left(\frac{1+z^{-1}}{1-z^{-1}}\right) = \frac{T}{2} \left(\frac{z+1}{z-1}\right)$$

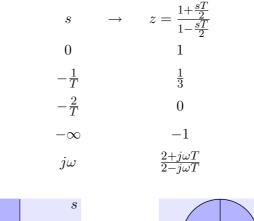
Map:

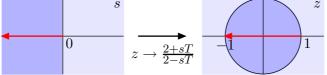
$$\mathcal{A} = \frac{1}{s} \to \frac{T}{2} \left(\frac{z+1}{z-1} \right)$$

Trapezoidal rule maps $z \rightarrow \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}}$.

Trapezoidal Rule: Mapping CT poles to DT poles

Trapezoidal Map:

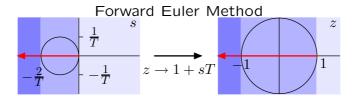


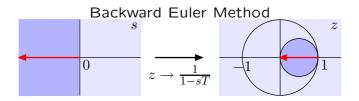


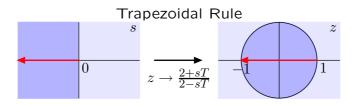
The entire left-half plane maps inside the unit circle.

The $j\omega$ axis maps onto the unit circle

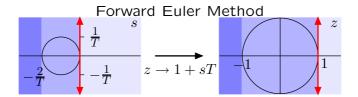
Mapping s to z: Leaky-Tank System

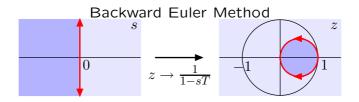


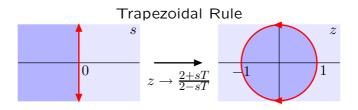




Mapping s to z: Mass and Spring System

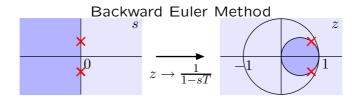


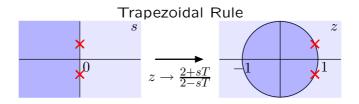




Mapping s to z: Mass and Spring System







Concept Map

Relations between CT and DT representations.

