# 6.003: Signals and Systems

### **Frequency Response**

March 4, 2010

#### **Review**

Last time, we saw how a linear, time-invariant (LTI) system can be characterized by its unit-sample/impulse response.

$$\mathsf{DT:} \ y[n] = (x*h)[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

CT: 
$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

Characterizing a system by its unit-sample/impulse response is especially insightful for some systems.

#### Microscope

Blurring can be represented by convolving the image with the optical "point-spread-function" (3D impulse response).



Blurring is inversely related to the diameter of the lens.





**Hubble Space Telescope** 



### Frequency Response

Today we will investigate a different way to characterize a system: the frequency response.

Many systems are naturally described by their responses to sinusoids.

Example: audio systems

### **Check Yourself**

How were frequencies modified in following music clips?

HF: high frequencies

1: increased

LF: low frequencies

↓: decreased

clip 2 clip 1

1. HF↑ HF]

2. LF↑ LF↓

HF↑ LF↓ 3.

LF↑ HF↓ 4.

none of the above

#### Frequency Response Preview

If the input to a linear, time-invariant system is an eternal sinusoid, then the output is also an eternal sinusoid:

- same frequency
- possibly different amplitude, and
- possibly different phase angle.



The **frequency response** is a plot of the magnitude M and angle  $\phi$  as a function of frequency  $\omega.$ 

#### **Demonstration**

Measure the frequency response of a mass, spring, dashpot system.



#### **Frequency Response**

Calculate the frequency response.

#### Methods

- solve differential equation
  - ightarrow find particular solution for  $x(t) = \cos \omega_0 t$
- find impulse response of system
  - ightarrow convolve with  $x(t) = \cos \omega_0 t$

#### New method

• use eigenfunctions and eigenvalues

#### Eigenfunctions

If the output signal is a scalar multiple of the input signal, we refer to the signal as an eigenfunction and the multiplier as the eigenvalue.



### **Check Yourself: Eigenfunctions**

Consider the system described by

$$\dot{y}(t) + 2y(t) = x(t).$$

Determine if each of the following functions is an eigenfunction of this system. If it is, find its eigenvalue.

- $1. \ e^{-t} \ \ {\rm for \ all \ time}$
- 2.  $e^t$  for all time
- 3.  $e^{jt}$  for all time
- 4. cos(t) for all time
- 5. u(t) for all time

### **Complex Exponentials**

Complex exponentials are eigenfunctions of LTI systems.

If  $x(t) = e^{st}$  and h(t) is the impulse response then

$$y(t) = (h*x)(t) = \int_{-\infty}^{\infty} h(\tau) e^{s(t-\tau)} d\tau = e^{st} \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau = H(s) \, e^{st}$$



Eternal sinusoids are sums of complex exponentials.

$$\cos \omega_0 t = \frac{1}{2} \left( e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$$

Furthermore, the eigenvalue associated with  $e^{st}$  is H(s)!

#### **Rational System Functions**

Eigenvalues are particularly easy to evaluate for systems represented by linear differential equations with constant coefficients.

Then the system function is a ratio of polynomials in s.

Example:

$$\ddot{y}(t) + 3\dot{y}(t) + 4y(t) = 2\ddot{x}(t) + 7\dot{x}(t) + 8x(t)$$

Thor

$$H(s) = \frac{2s^2 + 7s + 8}{s^2 + 3s + 4} \equiv \frac{N(s)}{D(s)}$$

#### **Vector Diagrams**

The value of H(s) at a point  $s=s_0$  can be determined graphically using vectorial analysis.

Factor the numerator and denominator of the system function to make poles and zeros explicit.

$$H(s_0) = K \frac{(s_0 - z_0)(s_0 - z_1)(s_0 - z_2) \cdots}{(s_0 - p_0)(s_0 - p_1)(s_0 - p_2) \cdots}$$



Each factor in the numerator/denominator corresponds to a vector from a zero/pole (here  $z_0$ ) to  $s_0$ , the point of interest in the s-plane.

#### **Vector Diagrams**

Example: Find the response of the system described by

$$H(s) = \frac{1}{s+2}$$

to the input  $x(t) = e^{2jt}$  (for all time).



The denominator of  $H(s)|_{s=2j}$  is 2j+2, a vector with length  $2\sqrt{2}$  and angle  $\pi/4$ . Therefore, the response of the system is

$$y(t) = H(2j)e^{2jt} = \frac{1}{2\sqrt{2}}e^{-\frac{j\pi}{4}}e^{2jt}$$
.

#### **Vector Diagrams**

The value of H(s) at a point  $s=s_0$  can be determined by combining the contributions of the vectors associated with each of the poles and zeros.

$$H(s_0) = K \frac{(s_0 - z_0)(s_0 - z_1)(s_0 - z_2) \cdots}{(s_0 - p_0)(s_0 - p_1)(s_0 - p_2) \cdots}$$

The magnitude is determined by the product of the magnitudes.

$$|H(s_0)| = |K| \frac{|(s_0 - z_0)||(s_0 - z_1)||(s_0 - z_2)| \cdots}{|(s_0 - p_0)||(s_0 - p_1)||(s_0 - p_2)| \cdots}$$

The angle is determined by the sum of the angles.

$$\angle H(s_0) = \angle K + \angle (s_0 - z_0) + \angle (s_0 - z_1) + \dots - \angle (s_0 - p_0) - \angle (s_0 - p_1) - \dots$$

### **Frequency Response**

Response to eternal sinusoids.

Let 
$$x(t) = \cos \omega_0 t$$
 (for all time). Then

$$x(t) = \frac{1}{2} \left( e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$$

and the response to a sum is the sum of the responses.

$$y(t) = \frac{1}{2} \left( H(j\omega_0) e^{j\omega_0 t} + H(-j\omega_0) e^{-j\omega_0 t} \right)$$

### **Conjugate Symmetry**

The complex conjugate of  $H(j\omega)$  is  $H(-j\omega)$ .

The system function is the Laplace transform of the impulse response:

$$H(s) = \int_{-\infty}^{\infty} h(t) e^{-st} dt$$

where  $\boldsymbol{h}(t)$  is a real-valued function of t for physical systems.

$$H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt$$

$$H(-j\omega) = \int_{-\infty}^{\infty} h(t)e^{j\omega t}dt \equiv (H(j\omega))^*$$

### **Frequency Response**

Response to eternal sinusoids.

Let  $x(t) = \cos \omega_0 t$  (for all time), which can be written as  $x(t) = \frac{1}{2} \left( e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$ 

The response to a sum is the sum of the responses,

$$y(t) = \frac{1}{2} \left( H(j\omega_0) e^{j\omega_0 t} + H(-j\omega_0) e^{-j\omega_0 t} \right)$$

$$= \operatorname{Re} \left\{ H(j\omega_0) e^{j\omega_0 t} \right\}$$

$$= \operatorname{Re} \left\{ |H(j\omega_0)| e^{j\angle H(j\omega_0)} e^{j\omega_0 t} \right\}$$

$$= |H(j\omega_0)| \operatorname{Re} \left\{ e^{j\omega_0 t + j\angle H(j\omega_0)} \right\}$$

$$y(t) = |H(j\omega_0)| \cos \left( \omega_0 t + \angle \left( H(j\omega_0) \right) \right).$$

#### **Frequency Response**

The magnitude and phase of the response of a system to an eternal cosine signal is the magnitude and phase of the system function evaluated at  $s = j\omega$ .

$$\cos(\omega t) \longrightarrow H(s) \longrightarrow |H(j\omega)| \cos(\omega t + \angle H(j\omega))$$

# $|H(j\omega)|$ $H(s) = s - z_1$



### **Vector Diagrams**



## **Vector Diagrams**

**Vector Diagrams** 



# Example: Mass, Spring, and Dashpot



$$\begin{split} F &= Ma = M\ddot{y}(t) = K(x(t) - y(t)) - B\dot{y}(t) \\ M\ddot{y}(t) &+ B\dot{y}(t) + Ky(t) = Kx(t) \\ (s^2M + sB + K) \ Y(s) &= KX(s) \\ H(s) &= \frac{K}{s^2M + sB + K} \end{split}$$

#### **Vector Diagrams**



### **Check Yourself**

Consider the system represented by the following poles.



Find the frequency  $\boldsymbol{\omega}$  at which the magnitude of the response y(t) is greatest if  $x(t) = \cos \omega t$ .

- 1.  $\omega = \omega_d$
- 2.  $\omega_d < \omega < \omega_0$
- 3.  $0 < \omega < \omega_d$
- 4. none of the above

### **Check Yourself**

Consider the system represented by the following poles.



Find the frequency  $\boldsymbol{\omega}$  at which the phase of the response y(t) is  $-\pi/2$  if  $x(t) = \cos \omega t$ .

- 0.  $0 < \omega < \omega_d$
- 1.  $\omega = \omega_d$
- 2.  $\omega_d < \omega < \omega_0$

- 3.  $\omega = \omega_0$
- 4.  $\omega > \omega_0$
- 5. none

### Frequency Response: Summary

LTI systems can be characterized by responses to eternal sinusoids.

Many systems are naturally described by their frequency response.

- audio systems
- mass, spring, dashpot system

Frequency response is easy to calculate from the system function.

Frequency response lives on the  $j\omega$  axis of the Laplace transform.