6.003: Signals and Systems

Frequency Response

March 4, 2010

Microscope

Blurring can be represented by convolving the image with the optical "point-spread-function" (3D impulse response).

Blurring is inversely related to the diameter of the lens.

Frequency Response

Today we will investigate a different way to characterize a system: the frequency response.

Many systems are naturally described by their responses to sinusoids.

Example: audio systems

Review

Last time, we saw how a linear, time-invariant (LTI) system can be characterized by its unit-sample/impulse response.

DT: $y[n]=(x * h)[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]$
CT: $y(t)=(x * h)(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$

Characterizing a system by its unit-sample/impulse response is especially insightful for some systems.

Hubble Space Telescope

Check Yourself

How were frequencies modified in following music clips?

HF: high frequencies	\uparrow : increased
LF: low frequencies	\downarrow : decreased

	clip 1	clip 2
1.	HF \uparrow	HF \downarrow
2.	LF \uparrow	LF \downarrow
3.	HF \uparrow	LF \downarrow
4.	LF \uparrow	$\mathrm{HF} \downarrow$

none of the above

Frequency Response Preview

If the input to a linear, time-invariant system is an eternal sinusoid, then the output is also an eternal sinusoid:

- same frequency
- possibly different amplitude, and
- possibly different phase angle.

The frequency response is a plot of the magnitude M and angle ϕ as a function of frequency ω.

Frequency Response

Calculate the frequency response.

Methods

- solve differential equation
\rightarrow find particular solution for $x(t)=\cos \omega_{0} t$
- find impulse response of system
\rightarrow convolve with $x(t)=\cos \omega_{0} t$

New method

- use eigenfunctions and eigenvalues

Check Yourself: Eigenfunctions

Consider the system described by

$$
\dot{y}(t)+2 y(t)=x(t)
$$

Determine if each of the following functions is an eigenfunction of this system. If it is, find its eigenvalue.
e^{-t} for all time
e^{t} for all time
$e^{j t}$ for all time
$\cos (t)$ for all time
5. $u(t)$ for all time

Demonstration

Measure the frequency response of a mass, spring, dashpot system.

Eigenfunctions

If the output signal is a scalar multiple of the input signal, we refer to the signal as an eigenfunction and the multiplier as the eigenvalue.

Complex Exponentials

Complex exponentials are eigenfunctions of LTI systems.

If $x(t)=e^{s t}$ and $h(t)$ is the impulse response then

$$
\begin{gathered}
y(t)=(h * x)(t)=\int_{-\infty}^{\infty} h(\tau) e^{s(t-\tau)} d \tau=e^{s t} \int_{-\infty}^{\infty} h(\tau) e^{-s \tau} d \tau=H(s) e^{s t} \\
e^{s t} \longrightarrow \begin{array}{c}
\text { LTI } \\
h(t)
\end{array} \longrightarrow H(s) e^{s t}
\end{gathered}
$$

Eternal sinusoids are sums of complex exponentials.

$$
\cos \omega_{0} t=\frac{1}{2}\left(e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right)
$$

Furthermore, the eigenvalue associated with $e^{s t}$ is $H(s)$!

Rational System Functions

Eigenvalues are particularly easy to evaluate for systems represented by linear differential equations with constant coefficients.

Then the system function is a ratio of polynomials in s.

Example:

$$
\ddot{y}(t)+3 \dot{y}(t)+4 y(t)=2 \ddot{x}(t)+7 \dot{x}(t)+8 x(t)
$$

Then

$$
H(s)=\frac{2 s^{2}+7 s+8}{s^{2}+3 s+4} \equiv \frac{N(s)}{D(s)}
$$

Vector Diagrams

Example: Find the response of the system described by

$$
H(s)=\frac{1}{s+2}
$$

to the input $x(t)=e^{2 j t}$ (for all time).

The denominator of $\left.H(s)\right|_{s=2 j}$ is $2 j+2$, a vector with length $2 \sqrt{2}$ and angle $\pi / 4$. Therefore, the response of the system is

$$
y(t)=H(2 j) e^{2 j t}=\frac{1}{2 \sqrt{2}} e^{-\frac{j \pi}{4}} e^{2 j t}
$$

Frequency Response

Response to eternal sinusoids.

Let $x(t)=\cos \omega_{0} t$ (for all time). Then

$$
x(t)=\frac{1}{2}\left(e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right)
$$

and the response to a sum is the sum of the responses.

$$
y(t)=\frac{1}{2}\left(H\left(j \omega_{0}\right) e^{j \omega_{0} t}+H\left(-j \omega_{0}\right) e^{-j \omega_{0} t}\right)
$$

Vector Diagrams

The value of $H(s)$ at a point $s=s_{0}$ can be determined graphically using vectorial analysis.

Factor the numerator and denominator of the system function to make poles and zeros explicit.

$$
H\left(s_{0}\right)=K \frac{\left(s_{0}-z_{0}\right)\left(s_{0}-z_{1}\right)\left(s_{0}-z_{2}\right) \cdots}{\left(s_{0}-p_{0}\right)\left(s_{0}-p_{1}\right)\left(s_{0}-p_{2}\right) \cdots}
$$

Each factor in the numerator/denominator corresponds to a vector from a zero/pole (here z_{0}) to s_{0}, the point of interest in the s-plane.

Vector Diagrams

The value of $H(s)$ at a point $s=s_{0}$ can be determined by combining the contributions of the vectors associated with each of the poles and zeros.

$$
H\left(s_{0}\right)=K \frac{\left(s_{0}-z_{0}\right)\left(s_{0}-z_{1}\right)\left(s_{0}-z_{2}\right) \cdots}{\left(s_{0}-p_{0}\right)\left(s_{0}-p_{1}\right)\left(s_{0}-p_{2}\right) \cdots}
$$

The magnitude is determined by the product of the magnitudes.

$$
\left|H\left(s_{0}\right)\right|=|K| \frac{\left|\left(s_{0}-z_{0}\right)\right|\left|\left(s_{0}-z_{1}\right)\right|\left|\left(s_{0}-z_{2}\right)\right| \cdots}{\left|\left(s_{0}-p_{0}\right)\right|\left|\left(s_{0}-p_{1}\right)\right|\left|\left(s_{0}-p_{2}\right)\right| \cdots}
$$

The angle is determined by the sum of the angles.

$$
\angle H\left(s_{0}\right)=\angle K+\angle\left(s_{0}-z_{0}\right)+\angle\left(s_{0}-z_{1}\right)+\cdots-\angle\left(s_{0}-p_{0}\right)-\angle\left(s_{0}-p_{1}\right)-\cdots
$$

Conjugate Symmetry

The complex conjugate of $H(j \omega)$ is $H(-j \omega)$.

The system function is the Laplace transform of the impulse response:

$$
H(s)=\int_{-\infty}^{\infty} h(t) e^{-s t} d t
$$

where $h(t)$ is a real-valued function of t for physical systems.

$$
\begin{aligned}
& H(j \omega)=\int_{-\infty}^{\infty} h(t) e^{-j \omega t} d t \\
& H(-j \omega)=\int_{-\infty}^{\infty} h(t) e^{j \omega t} d t \equiv(H(j \omega))^{*}
\end{aligned}
$$

Frequency Response

Response to eternal sinusoids.

Let $x(t)=\cos \omega_{0} t$ (for all time), which can be written as

$$
x(t)=\frac{1}{2}\left(e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right)
$$

The response to a sum is the sum of the responses,

$$
\begin{aligned}
y(t) & =\frac{1}{2}\left(H\left(j \omega_{0}\right) e^{j \omega_{0} t}+H\left(-j \omega_{0}\right) e^{-j \omega_{0} t}\right) \\
& =\operatorname{Re}\left\{H\left(j \omega_{0}\right) e^{j \omega_{0} t}\right\} \\
& =\operatorname{Re}\left\{\left|H\left(j \omega_{0}\right)\right| e^{j \angle H\left(j \omega_{0}\right)} e^{j \omega_{0} t}\right\} \\
& =\left|H\left(j \omega_{0}\right)\right| \operatorname{Re}\left\{e^{j \omega_{0} t+j \angle H\left(j \omega_{0}\right)}\right\} \\
y(t) & =\left|H\left(j \omega_{0}\right)\right| \cos \left(\omega_{0} t+\angle\left(H\left(j \omega_{0}\right)\right)\right)
\end{aligned}
$$

Vector Diagrams	
$H(s)=3 \frac{s-z_{1}}{s-p 1}$	

Frequency Response

The magnitude and phase of the response of a system to an eternal cosine signal is the magnitude and phase of the system function evaluated at $s=j \omega$.

Vector Diagrams

Example: Mass, Spring, and Dashpot

$$
\begin{aligned}
& F=M a=M \ddot{y}(t)=K(x(t)-y(t))-B \dot{y}(t) \\
& M \ddot{y}(t)+B \dot{y}(t)+K y(t)=K x(t) \\
& \left(s^{2} M+s B+K\right) Y(s)=K X(s) \\
& H(s)=\frac{K}{s^{2} M+s B+K}
\end{aligned}
$$

Vector Diagrams

$H(s)=\frac{15}{\left(s-p_{1}\right)\left(s-p_{2}\right)}$

Check Yourself

Consider the system represented by the following poles.

Find the frequency ω at which the magnitude of the response $y(t)$ is greatest if $x(t)=\cos \omega t$.

1. $\omega=\omega_{d}$
2. $\omega_{d}<\omega<\omega_{0}$
3. $0<\omega<\omega_{d}$
4. none of the above

Check Yourself

Consider the system represented by the following poles.

Find the frequency ω at which the phase of the response $y(t)$ is $-\pi / 2$ if $x(t)=\cos \omega t$.
0. $0<\omega<\omega_{d}$

1. $\omega=\omega_{d}$
2. $\omega_{d}<\omega<\omega_{0}$
3. $\omega=\omega_{0}$
4. $\omega>\omega_{0}$
5. none

Frequency Response: Summary

LTI systems can be characterized by responses to eternal sinusoids.

Many systems are naturally described by their frequency response.

- audio systems
- mass, spring, dashpot system

Frequency response is easy to calculate from the system function.

Frequency response lives on the $j \omega$ axis of the Laplace transform.

