6.003: Signals and Systems

CT Frequency Response and Bode Plots

March 9, 2010

Frequency Response: $\left.H(s)\right|_{s \leftarrow j \omega}$

Asymptotic Behavior: Isolated Zero

The magnitude response is simple at low and high frequencies.

$$
H(j \omega)=j \omega-z_{1}
$$

Last Time

Complex exponentials are eigenfunctions of LTI systems

$H\left(s_{0}\right)$ can be determined graphically using vectorial analysis.

$$
H\left(s_{0}\right)=K \frac{\left(s_{0}-z_{0}\right)\left(s_{0}-z_{1}\right)\left(s_{0}-z_{2}\right) \cdots}{\left(s_{0}-p_{0}\right)\left(s_{0}-p_{1}\right)\left(s_{0}-p_{2}\right) \cdots}
$$

Response of an LTI system to an eternal cosine is an eternal cosine: same frequency, but scaled and shifted.

Poles and Zeros

Thinking about systems as collections of poles and zeros is an important design concept.

- simple: just a few numbers characterize entire system
- powerful: complete information about frequency response

Today: poles, zeros, frequency responses, and Bode plots.

Asymptotic Behavior: Isolated Zero

Two asymptotes provide a good approxmation on log-log axes.

Asymptotic Behavior: Isolated Pole

The magnitude response is simple at low and high frequencies.

$$
H(s)=\frac{9}{s-p_{1}}
$$

Check Yourself

Compare log-log plots of the frequency-response magnitudes of the following system functions:

$$
H_{1}(s)=\frac{1}{s+1} \quad \text { and } \quad H_{2}(s)=\frac{1}{s+10}
$$

The former can be transformed into the latter by

1. shifting horizontally
2. shifting and scaling horizontally
3. shifting both horizontally and vertically
4. shifting and scaling both horizontally and vertically
5. none of the above

Asymptotic Behavior of More Complicated Systems

The magnitude of a product is the product of the magnitudes.

$$
\left|H\left(s_{0}\right)\right|=\left|K \frac{\prod_{q=1}^{Q}\left(s_{0}-z_{q}\right)}{\prod_{p=1}^{P}\left(s_{0}-p_{p}\right)}\right|=|K| \frac{\prod_{q=1}^{Q}\left|s_{0}-z_{q}\right|}{\prod_{p=1}^{P}\left|s_{0}-p_{p}\right|}
$$

Asymptotic Behavior: Isolated Pole

Two asymptotes provide a good approxmation on log-log axes.

$$
\begin{aligned}
& H(s)=\frac{9}{s-p_{1}} \\
& \text { (H(jw)| } \\
& \lim _{\omega \rightarrow 0}|H(j \omega)|=\frac{9}{p_{1}} \\
& \lim _{\omega \rightarrow \infty}|H(j \omega)|=\frac{9}{\omega}
\end{aligned}
$$

Asymptotic Behavior of More Complicated Systems

Constructing $H\left(s_{0}\right)$.

$$
H\left(s_{0}\right)=K \frac{\prod_{q=1}^{Q}\left(s_{0}-z_{q}\right)}{\frac{\leftarrow \text { product of vectors for zeros }}{\prod_{p=1}^{P}\left(s_{0}-p_{p}\right)}} \leftarrow \leftarrow \text { product of vectors for poles }
$$

Bode Plot

The log of the magnitude is a sum of logs.

$$
\left|H\left(s_{0}\right)\right|=\left|K \frac{\prod_{q=1}^{Q}\left(s_{0}-z_{q}\right)}{\prod_{p=1}^{P}\left(s_{0}-p_{p}\right)}\right|=|K| \frac{\prod_{q=1}^{Q}\left|s_{0}-z_{q}\right|}{\prod_{p=1}^{P}\left|s_{0}-p_{p}\right|}
$$

$\log |H(j \omega)|=\log |K|+\sum_{q=1}^{Q} \log \left|j \omega-z_{q}\right|-\sum_{p=1}^{P} \log \left|j \omega-p_{p}\right|$

Bode Plot: Adding Instead of Multiplying

Asymptotic Behavior: Isolated Zero

The angle response is simple at low and high frequencies.

Asymptotic Behavior: Isolated Pole

The angle response is simple at low and high frequencies.

Bode Plot: Adding Instead of Multiplying

Asymptotic Behavior: Isolated Zero

Three straight lines provide a good approxmation versus $\log \omega$.

$$
\begin{gathered}
\lim _{\omega \rightarrow 0} \angle H(j \omega)=0 \\
\lim _{\omega \rightarrow \infty} \angle H(j \omega)=\pi / 2
\end{gathered}
$$

Asymptotic Behavior: Isolated Pole

Three straight lines provide a good approxmation versus $\log \omega$.

$$
\angle H(j \omega) \quad H(s)=\frac{9}{s-p_{1}}
$$

Bode Plot

The angle of a product is the sum of the angles.

$$
\angle H\left(s_{0}\right)=\angle\left(K \frac{\prod_{q=1}^{Q}\left(s_{0}-z_{q}\right)}{\prod_{p=1}^{P}\left(s_{0}-p_{p}\right)}\right)=\angle K+\sum_{q=1}^{Q} \angle\left(s_{0}-z_{q}\right)-\sum_{p=1}^{P} \angle\left(s_{0}-p_{p}\right)
$$

The angle of K can be 0 or π for systems described by linear differential equations with constant, real-valued coefficients.

$$
\begin{aligned}
& \text { Bode Plot } \\
& H(s)=\frac{s}{(s+1)(s+10)} \\
& \text { s-plane }\left[\begin{array}{ll}
\omega & \pi / 2 \\
\hline 10 & -\pi / 2
\end{array}\right]
\end{aligned}
$$

Bode Plot

From Frequency Response to Bode Plot

The magnitude of $H(j \omega)$ is a product of magnitudes.

$$
|H(j \omega)|=|K| \frac{\prod_{q=1}^{Q}\left|j \omega-z_{q}\right|}{\prod_{p=1}^{P}\left|j \omega-p_{p}\right|}
$$

The log of the magnitude is a sum of logs.

$$
\log |H(j \omega)|=\log |K|+\sum_{q=1}^{Q} \log \left|j \omega-z_{q}\right|-\sum_{p=1}^{P} \log \left|j \omega-p_{p}\right|
$$

The angle of $H(j \omega)$ is a sum of angles.

$$
\angle H(j \omega)=\angle K+\sum_{q=1}^{Q} \angle\left(j \omega-z_{q}\right)-\sum_{p=1}^{P} \angle\left(j \omega-p_{p}\right)
$$

Bode Plot: dB

Bode Plot: dB

Check Yourself

Could the phase plots of any of these systems be equal to each other? [caution: this is a trick question]

Frequency Response of a High- Q System

The frequency-response magnitude of a high- Q system is peaked.

$$
H(s)=\frac{1}{1+\frac{1}{Q} \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}
$$

(

Bode Plot: Accuracy

The straight-line approximations are surprisingly accurate.

Frequency Response of a High- Q System

The frequency-response magnitude of a high- Q system is peaked.

$$
H(s)=\frac{1}{1+\frac{1}{Q} \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}
$$

Check Yourself

Find dependence of peak magnitude on Q (assume $Q>3$).
$H(s)=\frac{1}{1+\frac{1}{Q} \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}$

Frequency Response of a High- Q System

As Q increases, the width of the peak narrows.
$H(s)=\frac{1}{1+\frac{1}{Q} \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}$

Frequency Response of a High- Q System

As Q increases, the phase changes more abruptly with ω.

$$
H(s)=\frac{1}{1+\frac{1}{Q} \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}
$$

Check Yourself

Estimate change in phase that occurs over the 3 dB bandwidth.
$H(s)=\frac{1}{1+\frac{1}{Q} \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}$

Check Yourself

Estimate the " 3 dB bandwidth" of the peak (assume $Q>3$).
Let ω_{l} (or ω_{h}) represent the lowest (or highest) frequency for which the magnitude is greater than the peak value divided by $\sqrt{2}$. The 3 dB bandwidth is then $\omega_{h}-\omega_{l}$.

Frequency Response of a High- Q System

As Q increases, the phase changes more abruptly with ω.

$$
H(s)=\frac{1}{1+\frac{1}{Q} \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}
$$

Summary

The frequency response of a system can be quickly determined using Bode plots.
Bode plots are constructed from sections that correspond to single poles and single zeros.
Responses for each section simply sum when plotted on logarithmic coordinates.

