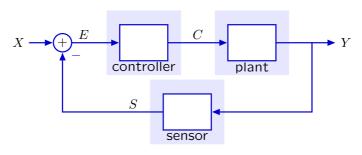
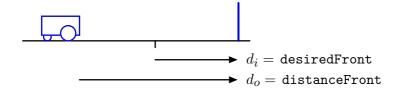
6.003: Signals and Systems

CT Feedback and Control

Feedback: simple, elegant, and robust framework for control.



We started with robotic driving.



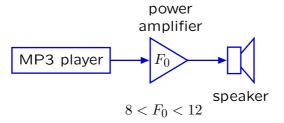
Using feedback to enhance performance.

Examples:

- improve performance of an op amp circuit.
- control position of a motor.
- reduce sensitivity to unwanted parameter variation.
- reduce distortions.
- stabilize unstable systems
 - magnetic levitation
 - inverted pendulum

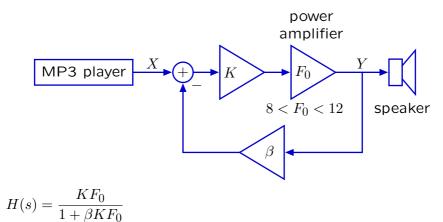
Reducing sensitivity to unwanted parameter variation.

Example: power amplifier



Changes in F_0 (due to changes in temperature, for example) lead to undesired changes in sound level.

Feedback can be used to compensate for parameter variation.

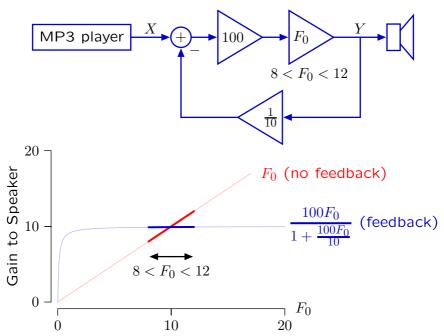


If K is made large, so that $\beta KF_0 \gg 1$, then

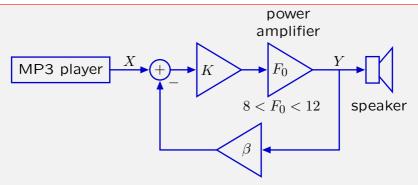
$$H(s) \approx \frac{1}{\beta}$$

independent of K or $F_0!$

Feedback reduces the change in gain due to change in F_0 .



Check Yourself



Feedback greatly reduces sensitivity to variations in K or F_0 .

$$\lim_{K \to \infty} H(s) = \frac{KF_0}{1 + \beta KF_0} \to \frac{1}{\beta}$$

What about variations in β ? Aren't those important?

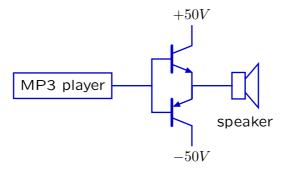
Check Yourself

What about variations in β ? Aren't those important?

The value of β is typically determined with resistors, whose values are quite stable (compared to semiconductor devices).

Feedback can compensate for parameter variation even when the variation occurs rapidly.

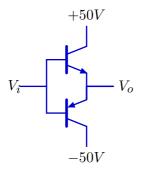
Example: using transistors to amplify power.

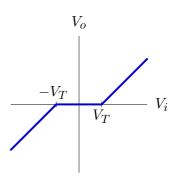


This circuit introduces "crossover distortion."

For the upper transistor to conduct, $V_i - V_o > V_T$.

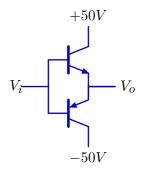
For the lower transistor to conduct, $V_i - V_o < -V_T$.

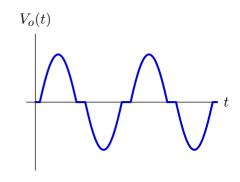




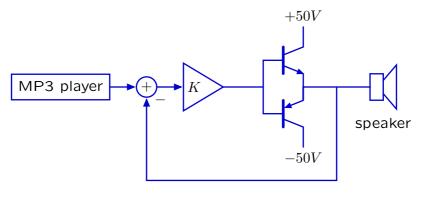
Crossover distortion can have dramatic effects.

Example: crossover distortion when the input is $V_i(t) = B\sin(\omega_0 t)$.

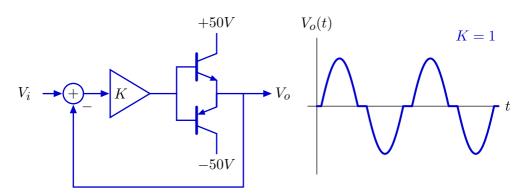




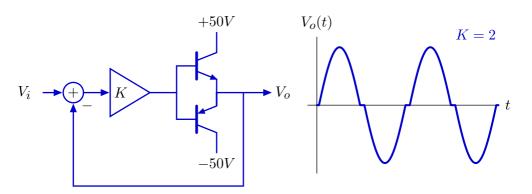
Feedback can reduce the effects of crossover distortion.



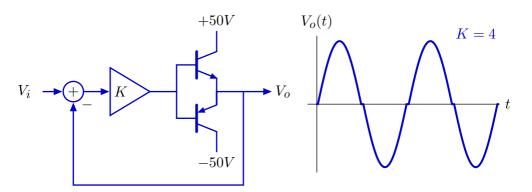
When K is small, feedback has little effect on crossover distortion.



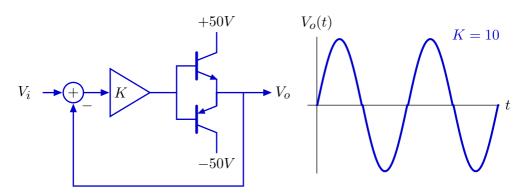
As K increases, feedback reduces crossover distortion.



As K increases, feedback reduces crossover distortion.

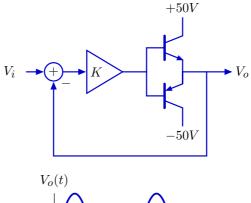


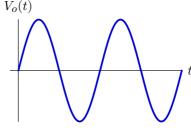
As K increases, feedback reduces crossover distortion.



Demo

- original
- no feedback
- K = 2
- K = 4
- K = 8
- K = 16
- original





J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto Nathan Milstein, violin

Using feedback to enhance performance.

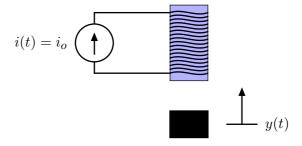
Examples:

- improve performance of an op amp circuit.
- control position of a motor.
- reduce sensitivity to unwanted parameter variation.
- reduce distortions.
- stabilize unstable systems
 - magnetic levitation
 - inverted pendulum

Control of Unstable Systems

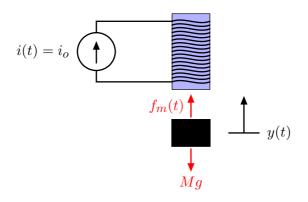
Feedback is useful for controlling **unstable** systems.

Example: Magnetic levitation.



Control of Unstable Systems

Magnetic levitation is unstable.



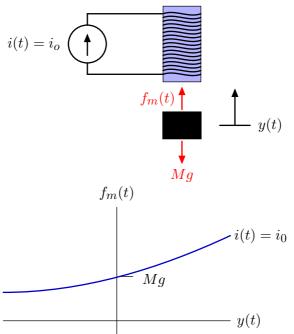
Equilibrium (y=0): magnetic force $f_m(t)$ is equal to the weight Mg.

Increase $y \rightarrow$ increased force \rightarrow further increases y.

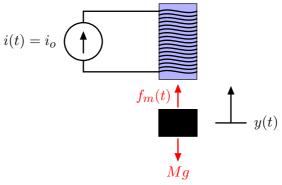
Decrease $y \rightarrow$ decreased force \rightarrow further decreases y.

Positive feedback!

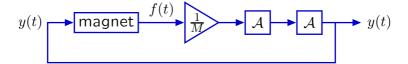
The magnet generates a force that depends on the distance y(t).



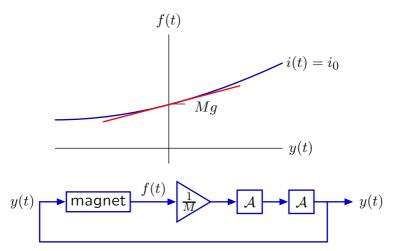
The net force accelerates the mass.



$$f_m(t) - Mg = f(t) = Ma = M\ddot{y}(t)$$



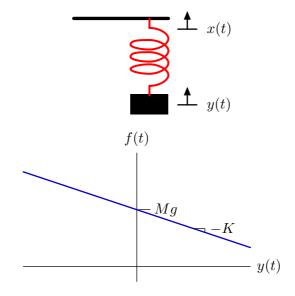
Over small distances, magnetic force grows \approx linearly with distance.



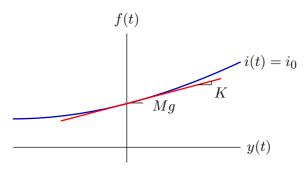
"Levitation" with a Spring

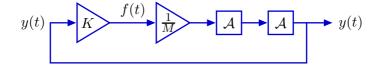
Relation between force and distance for a spring is opposite in sign.

$$F = K(x(t) - y(t)) = M\ddot{y}(t)$$



Over small distances, magnetic force nearly proportional to distance.





Block Diagrams

Block diagrams for magnetic levitation and spring/mass are similar.

Spring and mass

$$F = K\left(x(t) - y(t)\right) = M\ddot{y}(t)$$

$$x(t) \xrightarrow{K} \ddot{y}(t) \xrightarrow{K} y(t)$$

Magnetic levitation

Check Yourself

How do the poles of these two systems differ?

Spring and mass

$$F = K\left(x(t) - y(t)\right) = M\ddot{y}(t)$$

$$x(t) \xrightarrow{\qquad \qquad } K \xrightarrow{\qquad \qquad } y(t) \xrightarrow{\qquad \qquad } y(t)$$

Magnetic levitation

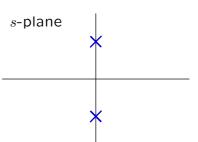
Check Yourself

How do the poles of the two systems differ?

Spring and mass

$$F = K(x(t) - y(t)) = M\ddot{y}(t)$$

$$\frac{Y}{X} = \frac{\frac{K}{M}}{s^2 + \frac{K}{M}} \quad \rightarrow \quad s = \pm j \sqrt{\frac{K}{M}}$$

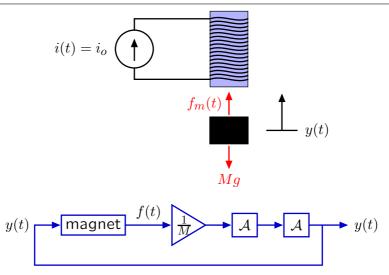


Magnetic levitation

$$F = Ky(t) = M\ddot{y}(t)$$

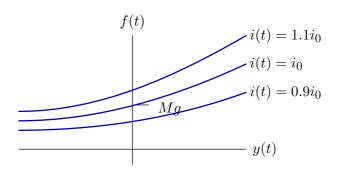
$$s^2 = \frac{K}{M} \rightarrow s = \pm \sqrt{\frac{K}{M}}$$

Magnetic Levitation is Unstable



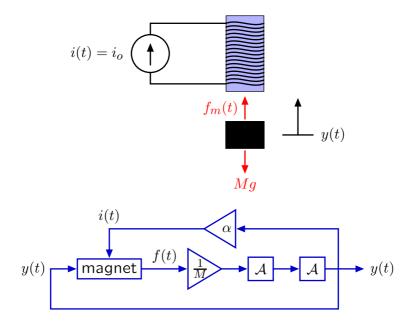
Magnetic Levitation

We can stabilize this system by adding an additional feedback loop to control i(t).



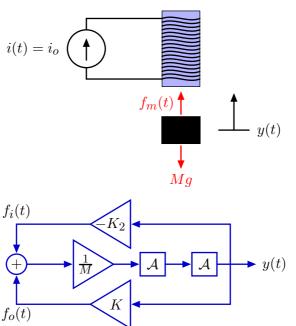
Stabilizing Magnetic Levitation

Stabilize magnetic levitation by controlling the magnet current.



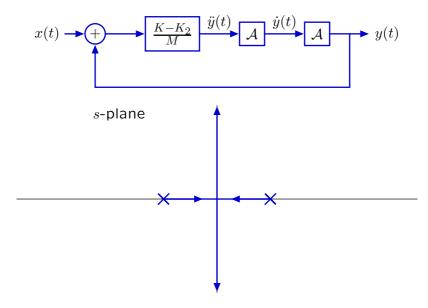
Stabilizing Magnetic Levitation

Stabilize magnetic levitation by controlling the magnet current.



Magnetic Levitation

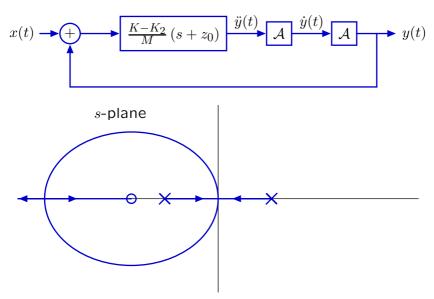
Increasing K_2 moves poles toward the origin and then onto $j\omega$ axis.



But the poles are still marginally stable.

Magnetic Levitation

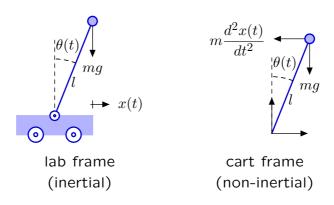
Adding a zero makes the poles stable for sufficiently large K_2 .



Try it: Demo [designed by Prof. James Roberge].

Inverted Pendulum

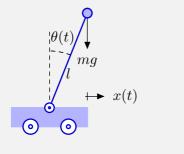
As a final example of stabilizing an unstable system, consider an inverted pendulum.



$$\underbrace{ml^2}_{I} \frac{d^2\theta(t)}{dt^2} = \underbrace{mg}_{\text{force}} \underbrace{l\sin\theta(t)}_{\text{distance}} - \underbrace{m\frac{d^2x(t)}{dt^2}}_{\text{force}} \underbrace{l\cos\theta(t)}_{\text{distance}}$$

Check Yourself: Inverted Pendulum

Where are the poles of this system?

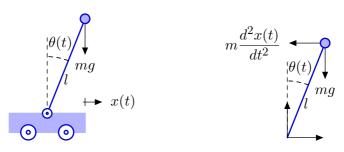


$$m\frac{d^2x(t)}{dt^2}$$

$$ml^{2}\frac{d^{2}\theta(t)}{dt^{2}} = mgl\sin\theta(t) - m\frac{d^{2}x(t)}{dt^{2}}l\cos\theta(t)$$

Check Yourself: Inverted Pendulum

Where are the poles of this system?



$$ml^{2}\frac{d^{2}\theta(t)}{dt^{2}} = mgl\sin\theta(t) - m\frac{d^{2}x(t)}{dt^{2}}l\cos\theta(t)$$

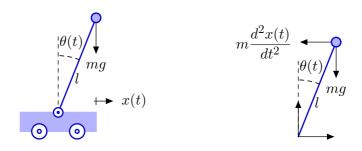
$$ml^{2}\frac{d^{2}\theta(t)}{dt^{2}} - mgl\theta(t) = -ml\frac{d^{2}x(t)}{dt^{2}}$$

$$H(s)=rac{\Theta}{X}=rac{-mls^2}{ml^2s^2-mql}=rac{-s^2/l}{s^2-q/l}$$
 poles at $s=\pm\sqrt{rac{g}{l}}$

poles at
$$s = \pm \sqrt{\frac{g}{l}}$$

Inverted Pendulum

This unstable system can be stablized with feedback.



Try it. Demo. [originally designed by Marcel Gaudreau]

Using feedback to enhance performance.

Examples:

- improve performance of an op amp circuit.
- control position of a motor.
- reduce sensitivity to unwanted parameter variation.
- reduce distortions.
- stabilize unstable systems
 - magnetic levitation
 - inverted pendulum