6.003: Signals and Systems

Fourier Series

Mid-term Examination #2

Wednesday, April 7, 7:30-9:30pm, 34-101.

No recitations on the day of the exam.

Coverage: Lectures 1–15

Recitations 1–15 Homeworks 1–8

Homework 8 will not collected or graded. Solutions will be posted.

Closed book: 2 pages of notes $(8\frac{1}{2} \times 11 \text{ inches}; \text{ front and back}).$

Designed as 1-hour exam; two hours to complete.

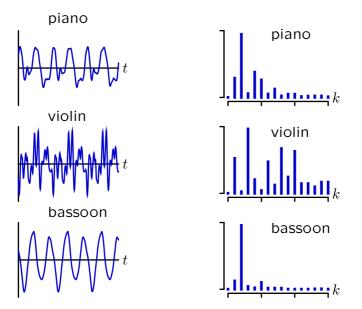
Review sessions during open office hours.

Conflict? Contact freeman@mit.edu before Friday, April 2, 5pm.

Last Time: Describing Signals by Frequency Content

Harmonic content is natural way to describe some kinds of signals.

Ex: musical instruments (http://theremin.music.uiowa.edu/MIS)



Last Time: Fourier Series

Determining harmonic components of a periodic signal.

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt$$
 ("analysis" equation)

$$x(t) = x(t+T) = \sum_{k=0}^{\infty} a_k e^{j\frac{2\pi}{T}kt}$$
 ("synthesis" equation)

Last Time: Fourier Series

Determining harmonic components of a periodic signal.

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt \qquad \qquad \text{("analysis" equation)}$$

$$x(t) = x(t+T) = \sum_{k=0}^{\infty} a_k e^{j\frac{2\pi}{T}kt} \qquad \qquad \text{("synthesis" equation)}$$

("synthesis" equation)

We can think of Fourier series as an orthogonal decomposition.

Vector representation of 3-space: let \bar{r} represent a vector with components $\{x, y, \text{ and } z\}$ in the $\{\hat{x}, \hat{y}, \text{ and } \hat{z}\}$ directions, respectively.

$$x=ar{r}\cdot\hat{x}$$
 $y=ar{r}\cdot\hat{y}$ ("analysis" equations) $z=ar{r}\cdot\hat{z}$ $ar{r}=x\hat{x}+y\hat{y}+z\hat{z}$ ("synthesis" equation)

Vector representation of 3-space: let \bar{r} represent a vector with components $\{x, y, \text{ and } z\}$ in the $\{\hat{x}, \hat{y}, \text{ and } \hat{z}\}$ directions, respectively.

$$x=ar{r}\cdot\hat{x}$$
 $y=ar{r}\cdot\hat{y}$ ("analysis" equations) $z=ar{r}\cdot\hat{z}$ $ar{r}=x\hat{x}+y\hat{y}+z\hat{z}$ ("synthesis" equation)

Fourier series: let x(t) represent a signal with harmonic components $\{a_0, a_1, \ldots, a_k\}$ for harmonics $\{e^{j0t}, e^{j\frac{2\pi}{T}t}, \ldots, e^{j\frac{2\pi}{T}kt}\}$ respectively.

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt \qquad \qquad \text{("analysis" equation)}$$

$$x(t)=x(t+T)=\sum_{k=0}^{\infty}a_{k}e^{jrac{2\pi}{T}kt}$$
 ("synthesis" equation)

Vector representation of 3-space: let \bar{r} represent a vector with components $\{x, y, \text{ and } z\}$ in the $\{\hat{x}, \hat{y}, \text{ and } \hat{z}\}$ directions, respectively.

$$\begin{array}{ll} x=\bar{r}\cdot\hat{x}\\ y=\bar{r}\cdot\hat{y}\\ z=\bar{r}\cdot\hat{z}\\ \\ \bar{r}=x\hat{x}+y\hat{y}+z\hat{z} \end{array} \qquad \text{("analysis" equations)}$$

Fourier series: let x(t) represent a signal with harmonic components $\{a_0, a_1, \ldots, a_k\}$ for harmonics $\{e^{j0t}, e^{j\frac{2\pi}{T}t}, \ldots, e^{j\frac{2\pi}{T}kt}\}$ respectively.

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt \qquad \qquad \text{("analysis" equation)}$$

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{T}kt}$$
 ("synthesis" equation)

Vector representation of 3-space: let \bar{r} represent a vector with components $\{x, y, \text{ and } z\}$ in the $\{\hat{x}, \hat{y}, \text{ and } \hat{z}\}$ directions, respectively.

$$x = \overline{r} \cdot \hat{x}$$

$$y = \overline{r} \cdot \hat{y}$$
 ("analysis" equations)
$$z = \overline{r} \cdot \hat{z}$$

$$\overline{r} = x\hat{x} + y\hat{y} + z\hat{z}$$
 ("synthesis" equation)

Fourier series: let x(t) represent a signal with harmonic components $\{a_0, a_1, \ldots, a_k\}$ for harmonics $\{e^{j0t}, e^{j\frac{2\pi}{T}t}, \ldots, e^{j\frac{2\pi}{T}kt}\}$ respectively.

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt \qquad \qquad \text{("analysis" equation)}$$

$$x(t) = x(t+T) = \sum_{k=0}^{\infty} a_k e^{j\frac{2\pi}{T}kt} \qquad \qquad \text{("synthesis" equation)}$$

Integrating over a period **sifts** out the $k^{
m th}$ component of the series.

Sifting as a dot product:

$$x = \bar{r} \cdot \hat{x} \equiv |\bar{r}||\hat{x}|\cos\theta$$

Sifting as an inner product:

$$a_k = e^{j\frac{2\pi}{T}kt} \cdot x(t) \equiv \frac{1}{T} \int_T x(t)e^{-j\frac{2\pi}{T}kt}dt$$

where

$$a(t) \cdot b(t) = \frac{1}{T} \int_{T} a^{*}(t)b(t)dt.$$

Integrating over a period **sifts** out the $k^{
m th}$ component of the series.

Sifting as a dot product:

$$x = \bar{r} \cdot \hat{x} \equiv |\bar{r}||\hat{x}|\cos\theta$$

Sifting as an inner product:

$$a_k = e^{j\frac{2\pi}{T}kt} \cdot x(t) \equiv \frac{1}{T} \int_T x(t)e^{-j\frac{2\pi}{T}kt}dt$$

where

$$a(t) \cdot b(t) = \frac{1}{T} \int_{T} a^*(t)b(t)dt$$
.

The complex conjugate (*) makes the inner product of the $k^{\rm th}$ and $m^{\rm th}$ components equal to 1 iff k=m:

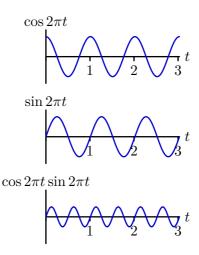
$$\frac{1}{T}\int_T \left(e^{j\frac{2\pi}{T}kt}\right)^* \left(e^{j\frac{2\pi}{T}mt}\right) dt = \frac{1}{T}\int_T e^{-j\frac{2\pi}{T}kt} e^{j\frac{2\pi}{T}mt} dt = \begin{cases} 1 & \text{if } k=m\\ 0 & \text{otherwise} \end{cases}$$

How many of the following pairs of functions are orthogonal (\perp) in T=3?

- 1. $\cos 2\pi t \perp \sin 2\pi t$?
- 2. $\cos 2\pi t \perp \cos 4\pi t$?
- 3. $\cos 2\pi t \perp \sin \pi t$?
- 4. $\cos 2\pi t \perp e^{j2\pi t}$?

How many of the following are orthogonal (\perp) in T=3?

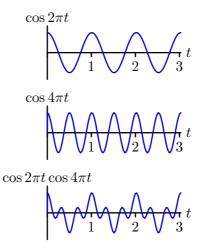
$$\cos 2\pi t \perp \sin 2\pi t$$
?



$$\int_{0}^{3} dt = 0$$
 therefore YES

How many of the following are orthogonal (\perp) in T=3?

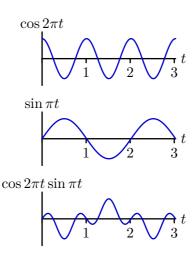
 $\cos 2\pi t \perp \cos 4\pi t$?



$$\int_{0}^{3} dt = 0$$
 therefore YES

How many of the following are orthogonal (\perp) in T=3?

 $\cos 2\pi t \perp \cos \pi t$?



$$\int_0^3 dt \neq 0$$
 therefore NO

How many of the following are orthogonal (\perp) in T=3?

$$\cos 2\pi t \perp e^{2\pi t}$$
?
 $e^{2\pi t} = \cos 2\pi t + j \sin 2\pi t$
 $\cos 2\pi t \perp \sin 2\pi t$ but not $\cos 2\pi t$

Therefore NO

How many of the following pairs of functions are orthogonal (\perp) in T=3? 2

1.
$$\cos 2\pi t \perp \sin 2\pi t$$
?

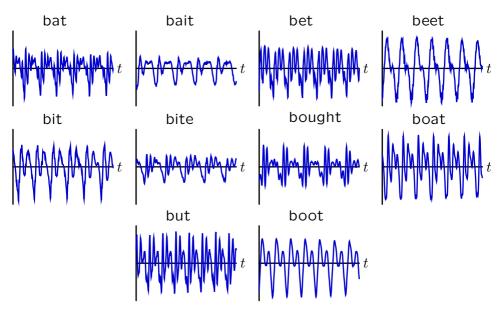
2.
$$\cos 2\pi t \perp \cos 4\pi t$$
?

3.
$$\cos 2\pi t \perp \sin \pi t$$
?

4.
$$\cos 2\pi t \perp e^{j2\pi t}$$
?

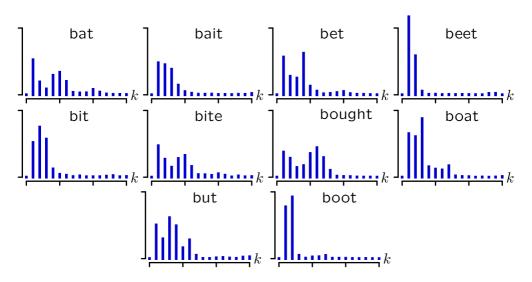
Speech

Vowel sounds are quasi-periodic.



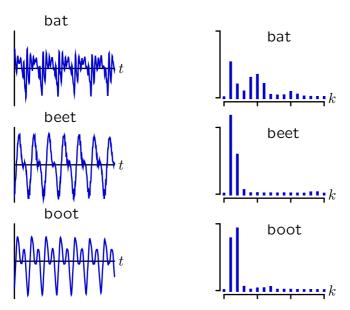
Speech

Harmonic content is natural way to describe vowel sounds.

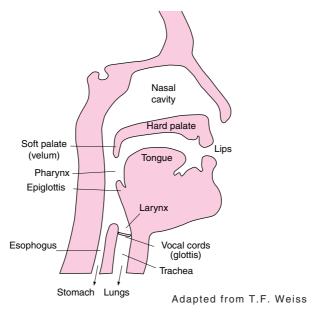


Speech

Harmonic content is natural way to describe vowel sounds.

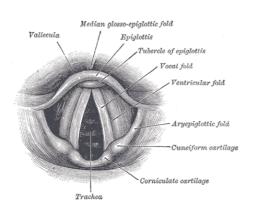


Speech is generated by the passage of air from the lungs, through the vocal cords, mouth, and nasal cavity.



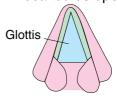
Controlled by complicated muscles, the vocal cords are set into vibrational motion by the passage of air from the lungs.

Looking down the throat:

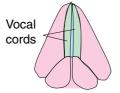


Gray's Anatomy

Vocal cords open

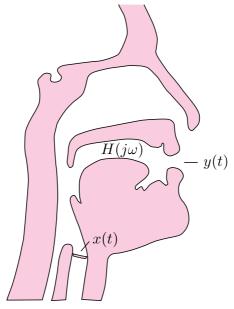


Vocal cords closed



Adapted from T.F. Weiss

Vibrations of the vocal cords are "filtered" by the mouth and nasal cavities to generate speech.



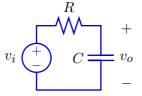
Filtering

Notion of a filter.

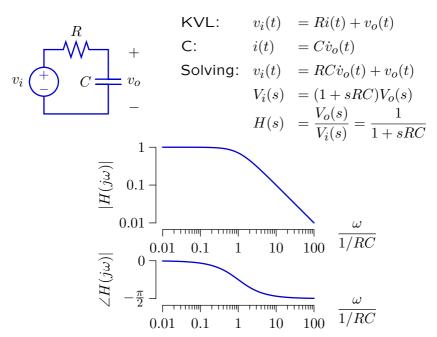
LTI systems

- cannot create new frequencies.
- can only scale magnitudes and shift phases of existing components.

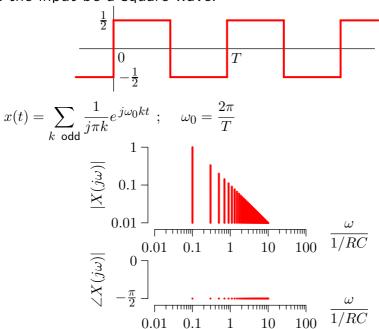
Example: Low-Pass Filtering with an RC circuit



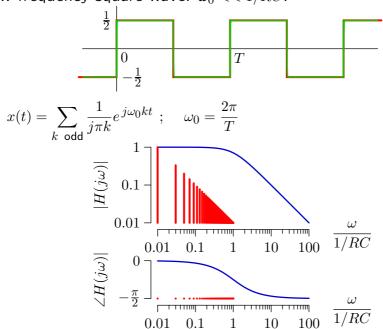
Calculate the frequency response of an RC circuit.



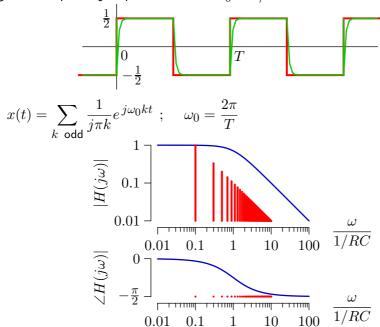
Let the input be a square wave.



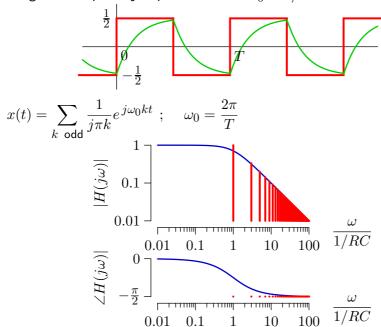
Low frequency square wave: $\omega_0 << 1/RC$.



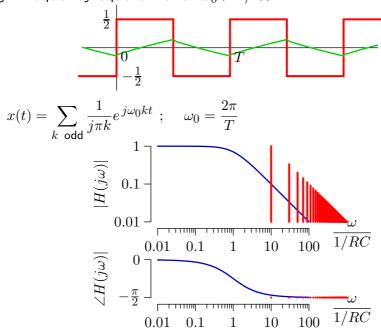
Higher frequency square wave: $\omega_0 < 1/RC$.



Still higher frequency square wave: $\omega_0 = 1/RC$.

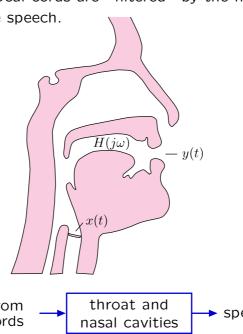


High frequency square wave: $\omega_0 > 1/RC$.



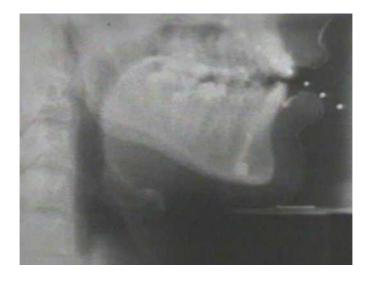
Source-Filter Model of Speech Production

Vibrations of the vocal cords are "filtered" by the mouth and nasal cavities to generate speech.



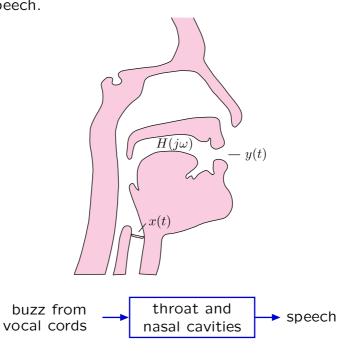
buzz from speech vocal cords

X-ray movie showing speech in production.



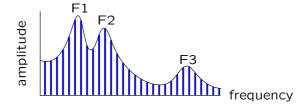
Demonstration

Artificial speech.



Formants

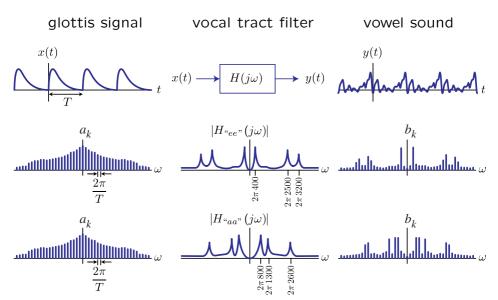
Resonant frequencies of the vocal tract.



	Formant	heed	head	had	hod	haw'd	who'd
Men	F1	270	530	660	730	570	300
	F2	2290	1840	1720	1090	840	870
	F3	3010	2480	2410	2440	2410	2240
Women	F1	310	610	860	850	590	370
	F2	2790	2330	2050	1220	920	950
	F3	3310	2990	2850	2810	2710	2670
Children	F1	370	690	1010	1030	680	430
	F2	3200	2610	2320	1370	1060	1170
	F3	3730	3570	3320	3170	3180	3260

http://www.sfu.ca/sonic-studio/handbook/Formant.html

Same glottis signal + different formants \rightarrow different vowels.



We detect changes in the filter function to recognize vowels.

Singing

We detect changes in the filter function to recognize vowels ... at least sometimes.

Demonstration.

```
"la" scale.
```

"lore" scale.

"loo" scale.

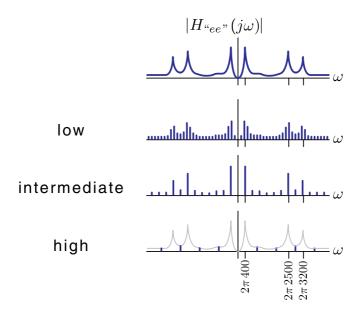
"ler" scale.

"lee" scale.

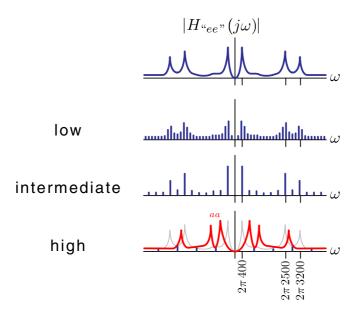
Low Frequency: "la" "lore" "loo" "ler" "lee".

High Frequency: "la" "lore" "loo" "ler" "lee".

We detect changes in the filter function to recognize vowels.



We detect changes in the filter function to recognize vowels.



Continuous-Time Fourier Series: Summary

Fourier series represent signals by their frequency content.

Representing a signal by its frequency content is useful for many signals, e.g., music.

Fourier series motivate a new representation of a system as a filter.

Representing a system as a filter is useful for many systems, e.g., speech synthesis.