6.003: Signals and Systems

Discrete-Time Frequency Representations

April 13, 2010

Historical Perspective

Broad range of CT signal-processing problems:

- audio
- radio (noise/static reduction, automatic gain control, etc.)
- telephone (equalizers, echo-suppression, etc.)
- hi-fi (bass, treble, loudness, etc.)
- television (brightness, tint, etc.)
- radar and sonar (sensitivity, noise suppression, object detection)

Increasing important applications of DT signal processing:

- MP3
- JPEG
- MPEG
- MRI

Signal Processing: Acoustico-Mechanical

Passive radiator for improved low-frequency preformance.

Signals and/or Systems

Two perspectives:

- feedback and control (focus on systems)

- Is the system stable?
- signal processing (focus on signals)

- Learn about target (signal) from the image (signal).

Fourier methods are especially useful in signal processing.

Signal Processing: Acoustical

Mechano-acoustic components to optimize frequency response of loudspeakers: e.g., "bass-reflex" system.

Signal Processing: Electronic

The development of low-cost electronics enhanced our ability to alter the natural frequency responses of systems.

Eight drivers faced the wall; one pointed faced the listener.
Electronic "equalizer" compensates for limited frequency response.

Signal Processing

Modern audio systems process sounds digitally.

DT Fourier Series and Frequency Response

Today: frequency representations for DT signals and systems.

Rational System Functions

A system described by a linear difference equation with constant coefficients \rightarrow system function that is a ratio of polynomials in z.

Example:

$$
\begin{aligned}
& y[n-2]+3 y[n-1]+4 y[n]=2 x[n-2]+7 x[n-1]+8 x[n] \\
& H(z)=\frac{2 z^{-2}+7 z^{-1}+8}{z^{-2}+3 z^{-1}+4}=\frac{2+7 z+8 z^{2}}{1+3 z+4 z^{2}} \equiv \frac{N(z)}{D(z)}
\end{aligned}
$$

Signal Processing

Modern audio systems process sounds digitally.

Texas Instruments TAS3004

- 2 channels
- 24 bit ADC, 24 bit DAC
- 48 kHz sampling rate
- 100 MIPS
- \$7.70 (\$4.81 in bulk)

Complex Geometric Sequences

Complex geometric sequences are eigenfunctions of DT LTI systems.

Find response of DT LTI system $(h[n])$ to input $x[n]=z^{n}$.

$$
y[n]=(h * x)[n]=\sum_{k=-\infty}^{\infty} h[k] z^{n-k}=z^{n} \sum_{k=-\infty}^{\infty} h[k] z^{-k}=H(z) z^{n} .
$$

Complex geometrics (DT): analogous to complex exponentials (CT)

$$
\begin{aligned}
& z^{n} \rightarrow h[n] \rightarrow H(z) z^{n} \\
& e^{s t} \longrightarrow h(t) \longrightarrow H(s) e^{s t}
\end{aligned}
$$

DT Vector Diagrams

Factor the numerator and denominator of the system function to make poles and zeros explicit.

$$
H\left(z_{0}\right)=K \frac{\left(z_{0}-q_{0}\right)\left(z_{0}-q_{1}\right)\left(z_{0}-q_{2}\right) \cdots}{\left(z_{0}-p_{0}\right)\left(z_{0}-p_{1}\right)\left(z_{0}-p_{2}\right) \cdots}
$$

Each factor in the numerator/denominator corresponds to a vector from a zero/pole (here q_{0}) to z_{0}, the point of interest in the z-plane. Vector diagrams for DT are similar to those for CT.

6.003: Signals and Systems

DT Vector Diagrams

Value of $H(z)$ at $z=z_{0}$ can be determined by combining the contributions of the vectors associated with each of the poles and zeros.

$$
H\left(z_{0}\right)=K \frac{\left(z_{0}-q_{0}\right)\left(z_{0}-q_{1}\right)\left(z_{0}-q_{2}\right) \cdots}{\left(z_{0}-p_{0}\right)\left(z_{0}-p_{1}\right)\left(z_{0}-p_{2}\right) \cdots}
$$

The magnitude is determined by the product of the magnitudes.

$$
\left|H\left(z_{0}\right)\right|=|K| \frac{\left|\left(z_{0}-q_{0}\right)\right|\left|\left(z_{0}-q_{1}\right)\right|\left|\left(z_{0}-q_{2}\right)\right| \cdots}{\left|\left(z_{0}-p_{0}\right)\right|\left|\left(z_{0}-p_{1}\right)\right|\left|\left(z_{0}-p_{2}\right)\right| \cdots}
$$

The angle is determined by the sum of the angles.

$$
\angle H\left(z_{0}\right)=\angle K+\angle\left(z_{0}-q_{0}\right)+\angle\left(z_{0}-q_{1}\right)+\cdots-\angle\left(z_{0}-p_{0}\right)-\angle\left(z_{0}-p_{1}\right)-\cdots
$$

Conjugate Symmetry

For physical systems, the complex conjugate of $H\left(e^{j \Omega}\right)$ is $H\left(e^{-j \Omega}\right)$.
The system function is the Z transform of the unit-sample response:

$$
H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n}
$$

where $h[n]$ is a real-valued function of n for physical systems.

$$
\begin{aligned}
& H\left(e^{j \Omega}\right)=\sum_{n=-\infty}^{\infty} h[n] e^{-j \Omega n} \\
& H\left(e^{-j \Omega}\right)=\sum_{n=-\infty}^{\infty} h[n] e^{j \Omega n} \equiv\left(H\left(e^{j \Omega}\right)\right)^{*}
\end{aligned}
$$

Frequency Response

The magnitude and phase of the response of a system to an eternal cosine signal is the magnitude and phase of the system function evaluated on the unit circle.

$H\left(e^{j \Omega}\right)=\left.H(z)\right|_{z=e^{j \Omega}}$

DT Frequency Response

Response to eternal sinusoids.

Let $x[n]=\cos \Omega_{0} n$ (for all time):

$$
x[n]=\frac{1}{2}\left(e^{j \Omega_{0} n}+e^{-j \Omega_{0} n}\right)=\frac{1}{2}\left(z_{0}^{n}+z_{1}^{n}\right)
$$

where $z_{0}=e^{j \Omega_{0}}$ and $z_{1}=e^{-j \Omega_{0}}$.

The response to a sum is the sum of the responses:

$$
\begin{aligned}
y[n] & =\frac{1}{2}\left(H\left(z_{0}\right) z_{0}^{n}+H\left(z_{1}\right) z_{1}^{n}\right) \\
& =\frac{1}{2}\left(H\left(e^{j \Omega_{0}}\right) e^{j \Omega_{0} n}+H\left(e^{-j \Omega_{0}}\right) e^{-j \Omega_{0} n}\right)
\end{aligned}
$$

DT Frequency Response

Response to eternal sinusoids.
Let $x[n]=\cos \Omega_{0} n$ (for all time), which can be written as

$$
x[n]=\frac{1}{2}\left(e^{j \Omega_{0} n}+e^{-j \Omega_{0} n}\right)
$$

Then

$$
\begin{aligned}
y[n] & =\frac{1}{2}\left(H\left(e^{j \Omega_{0}}\right) e^{j \Omega_{0} n}+H\left(e^{-j \Omega_{0}}\right) e^{-j \Omega_{0} n}\right) \\
& =\operatorname{Re}\left\{H\left(e^{j \Omega_{0}}\right) e^{j \Omega_{0} n}\right\} \\
& =\operatorname{Re}\left\{\left|H\left(e^{j \Omega_{0}}\right)\right| e^{j \angle H\left(e^{j \Omega_{0}}\right)} e^{j \Omega_{0} n}\right\} \\
& =\left|H\left(e^{j \Omega_{0}}\right)\right| \operatorname{Re}\left\{e^{j \Omega_{0} n+j \angle H\left(e^{j \Omega_{0}}\right)}\right\} \\
y[n] & =\left|H\left(e^{j \Omega_{0}}\right)\right| \cos \left(\Omega_{0} n+\angle H\left(e^{j \Omega_{0}}\right)\right)
\end{aligned}
$$

Comparision of CT and DT Frequency Responses

CT frequency response: $H(s)$ on the imaginary axis, i.e., $s=j \omega$. DT frequency response: $H(z)$ on the unit circle, i.e., $z=e^{j \Omega}$.

6.003: Signals and Systems

Periodicity of DT Frequency Responses

DT frequency responses are periodic functions of Ω, with period 2π.

If $\Omega_{2}=\Omega_{1}+2 \pi k$ where k is an integer then

$$
H\left(e^{j \Omega_{2}}\right)=H\left(e^{j\left(\Omega_{1}+2 \pi k\right)}\right)=H\left(e^{j \Omega_{1}} e^{j 2 \pi k}\right)=H\left(e^{j \Omega_{1}}\right)
$$

The periodicity of $H\left(e^{j \Omega}\right)$ results because $H\left(e^{j \Omega}\right)$ is a function of $e^{j \Omega}$, which is itself periodic in Ω. Thus DT complex exponentials have many "aliases."

$$
e^{j \Omega_{2}}=e^{j\left(\Omega_{1}+2 \pi k\right)}=e^{j \Omega_{1}} e^{j 2 \pi k}=e^{j \Omega_{1}}
$$

Because of this aliasing, there is a "highest" DT frequency: $\Omega=\pi$.

DT Fourier Series

DT Fourier series represent DT signals in terms of the amplitudes and phases of harmonic components.

$$
x[n]=\sum a_{k} e^{j k \Omega_{0} n}
$$

The period N of all harmonic components is the same.

DT Fourier Series

There are N distinct complex exponentials with period N.
These can be combined via Fourier series to produce periodic time signals with N independent samples.

Example: periodic in $\mathrm{N}=3$

3 samples repeated in time

Example: periodic in $\mathrm{N}=4$

4 samples repeated in time

Check Yourself

What kind of filtering corresponds to the following?

1. high pass
2. Iow pass
3. band pass
4. band stop (notch)
5. none of above

DT Fourier Series

There are N distinct complex exponentials with period N.

If $e^{j \Omega n}$ is periodic in N then
$e^{j \Omega n}=e^{j \Omega(n+N)}=e^{j \Omega n} e^{j \Omega N}$
and $e^{j \Omega N}$ must be 1 , and Ω must be one of the $N^{t h}$ roots of 1 .
Example: $N=8$

DT Fourier Series

DT Fourier series represent DT signals in terms of the amplitudes and phases of harmonic components.

$$
x[n]=x[n+N]=\sum_{k=0}^{N-1} a_{k} e^{j k \Omega_{0} n} \quad ; \quad \Omega_{0}=\frac{2 \pi}{N}
$$

N equations (one for each point in time n) in N unknowns $\left(a_{k}\right)$.

Example: $N=4$

$$
\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3]
\end{array}\right]=\left[\begin{array}{llll}
e^{j \frac{2 \pi}{N} 0 \cdot 0} & e^{j \frac{2 \pi}{N} 1 \cdot 0} & e^{j \frac{2 \pi}{N} 2 \cdot 0} & e^{j \frac{2 \pi}{N} 3 \cdot 0} \\
e^{j \frac{2 \pi}{N} 0 \cdot 1} & e^{j \frac{2 \pi}{N} 1 \cdot 1} & e^{j \frac{2 \pi}{N} 2 \cdot 1} & e^{j \frac{2 \pi}{N} 3 \cdot 1} \\
e^{j \frac{2 \pi}{N} 0 \cdot 2} & e^{j \frac{2 \pi}{N} 1 \cdot 2} & e^{j \frac{2 \pi}{N} 2 \cdot 2} & e^{j \frac{2 \pi}{N} 3 \cdot 2} \\
e^{j \frac{2 \pi}{N} 0 \cdot 3} & e^{j \frac{2 \pi}{N} 1 \cdot 3} & e^{j \frac{2 \pi}{N} 2 \cdot 3} & e^{j \frac{2 \pi}{N} 3 \cdot 3}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

6.003: Signals and Systems

DT Fourier Series

DT Fourier series represent DT signals in terms of the amplitudes and phases of harmonic components.

$$
x[n]=x[n+N]=\sum_{k=0}^{N-1} a_{k} e^{j k \Omega_{0} n} \quad ; \quad \Omega_{0}=\frac{2 \pi}{N}
$$

N equations (one for each point in time n) in n unknowns $\left(a_{k}\right)$.

Example: $N=4$

$$
\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3]
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

DT Fourier Series

We can use the orthogonality property of these complex exponentials to sift out the Fourier series coefficients, one at a time.

Assume $x[n]=\sum_{k=0}^{N-1} a_{k} e^{j k \Omega_{0} n}$
Multiply both sides by the complex conjugate of the $l^{\text {th }}$ harmonic, and sum over time.

$$
\begin{aligned}
\sum_{n=0}^{N-1} x[n] e^{-j l \Omega_{0} n} & =\sum_{n=0}^{N-1} \sum_{k=0}^{N-1} a_{k} e^{j k \Omega_{0} n} e^{-j l \Omega_{0} n}=\sum_{k=0}^{N-1} a_{k} \sum_{n=0}^{N-1} e^{j k \Omega_{0} n} e^{-j l \Omega_{0} n} \\
& =\sum_{k=0}^{N-1} a_{k} N \delta[k-l]=N a_{l}
\end{aligned}
$$

$$
a_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \Omega_{0} n}
$$

DT Fourier Series

DT Fourier series have simple matrix interpretations.

$$
\begin{aligned}
& x[n]=x[n+4]=\sum_{k=<4>} a_{k} e^{j k \Omega_{0} n}=\sum_{k=<4>} a_{k} e^{j k \frac{2 \pi}{4} n}=\sum_{k=<4>} a_{k} j^{k n} \\
& {\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3]
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]} \\
& a_{k}=a_{k+4}=\frac{1}{4} \sum_{n=<4>} x[n] e^{-j k \Omega_{0} n}=\frac{1}{4} \sum_{n=<4>} e^{-j k \frac{2 \pi}{N} n}=\frac{1}{4} \sum_{n=<4>} x[n] j^{-k n} \\
& {\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3]
\end{array}\right]}
\end{aligned}
$$

These matrices are inverses of each other.

DT Fourier Series

Solving these equations is simple because these complex exponentials are orthogonal to each other.

$$
\begin{aligned}
\sum_{n=0}^{N-1} e^{j \Omega_{0} k n} e^{-j \Omega_{0} l n} & =\sum_{n=0}^{N-1} e^{j \Omega_{0}(k-l) n} \\
& = \begin{cases}N & ; k=l \\
\frac{1-e^{j \Omega_{0}(k-l) N}}{1-e^{j \Omega_{0}(k-l)}}=0 & ; k \neq l\end{cases} \\
& =N \delta[k-l]
\end{aligned}
$$

DT Fourier Series

Since both $x[n]$ and a_{k} are periodic in N, the sums can be taken over any N successive indices.

Notation. If $f[n]$ is periodic in N, then

$$
\sum_{n=0}^{N-1} f[n]=\sum_{n=1}^{N} f[n]=\sum_{n=2}^{N+1} f[n]=\cdots=\sum_{n=<N>} f[n]
$$

DT Fourier Series

$$
\begin{array}{ll}
a_{k}=a_{k+N}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j \Omega_{0} n} ; \Omega_{0}=\frac{2 \pi}{N} & \text { ("analysis" equation) } \\
x[n]=x[n+N]=\sum_{k=<N>} a_{k} e^{j k \Omega_{0} n} & \text { ("synthesis" equation) }
\end{array}
$$

Discrete-Time Frequency Representations

Similarities and differences between CT and DT.

DT frequency response

- vector diagrams (similar to CT)
- frequency response on unit circle in z-plane ($j \omega$ axis in CT)

DT Fourier series

- represent signal as sum of harmonics (similar to CT)
- finite number of periodic harmonics (unlike CT)
- finite sum (unlike CT)

