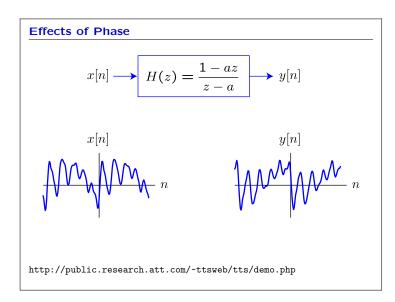
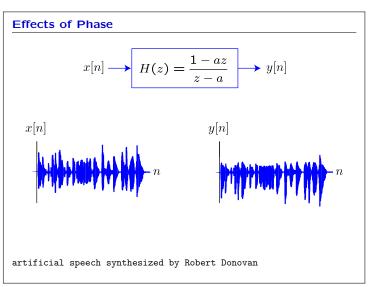
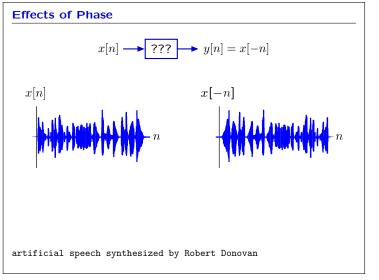


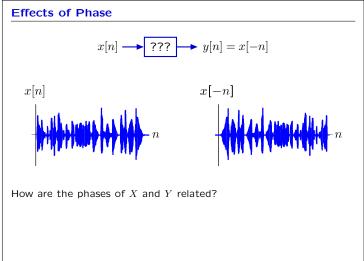
6.003: Signals and Systems

Lecture 19









Review: Periodicity

DT frequency responses are periodic functions of $\Omega,$ with period $2\pi.$

If $\Omega_2=\Omega_1+2\pi k$ where k is an integer then

$$H(e^{j\Omega_2}) = H(e^{j(\Omega_1 + 2\pi k)}) = H(e^{j\Omega_1}e^{j2\pi k}) = H(e^{j\Omega_1})$$

The periodicity of $H(e^{\,j\Omega})$ results because $H(e^{\,j\Omega})$ is a function of $e^{\,j\Omega}$, which is itself periodic in Ω . Thus DT complex exponentials have many "aliases."

 $e^{j\Omega_2} = e^{j(\Omega_1 + 2\pi k)} = e^{j\Omega_1}e^{j2\pi k} = e^{j\Omega_1}$

Because of this aliasing, there is a "highest" DT frequency: $\Omega=\pi.$

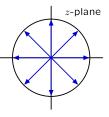
Review: Periodic Sinusoids There are *N* distinct DT complex exponentials with period *N*.

If $e^{j\Omega n}$ is periodic in N then

$$e^{j\Omega n} = e^{j\Omega(n+N)} = e^{j\Omega n}e^{j\Omega N}$$

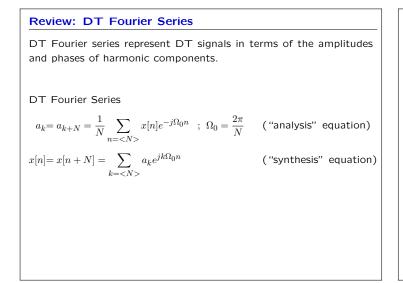
Example: N = 8

and $e^{\,j\Omega N}$ must be 1, and Ω must be one of the N^{th} roots of 1.



6.003: Signals and Systems

Lecture 19



DT Fourier Series

DT Fourier series have simple matrix interpretations.

$$\begin{split} x[n] &= x[n+4] = \sum_{k=<4>} a_k e^{jk\Omega_0 n} = \sum_{k=<4>} a_k e^{jk\frac{2\pi}{4}n} = \sum_{k=<4>} a_k j^{kn} \\ \begin{bmatrix} x[0]\\ x[1]\\ x[2]\\ x[3] \end{bmatrix} &= \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & j & -1 & -j\\ 1 & -1 & 1 & -1\\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} a_0\\ a_1\\ a_2\\ a_3 \end{bmatrix} \\ a_k &= a_{k+4} = \frac{1}{4} \sum_{n=<4>} x[n] e^{-jk\Omega_0 n} = \frac{1}{4} \sum_{n=<4>} e^{-jk\frac{2\pi}{N}n} = \frac{1}{4} \sum_{n=<4>} x[n] j^{-kn} \\ \begin{bmatrix} a_0\\ a_1\\ a_2\\ a_3 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & -j & -1 & j\\ 1 & -1 & 1 & -1\\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} x[0]\\ x[1]\\ x[2]\\ x[3] \end{bmatrix} \\ \\ \text{These matrices are inverses of each other.} \end{split}$$

Scaling

FFT

 $\begin{bmatrix} a_0 \end{bmatrix}$

 a_1

 $\begin{vmatrix} a_1 \\ a_2 \\ a_3 \end{vmatrix} =$

DT Fourier series are important computational tools. However, the DT Fourier series do not scale well with the length N.

$$\begin{split} a_k &= a_{k+2} = \frac{1}{2} \sum_{n = <2>} x[n] e^{-jk\Omega_0 n} = \frac{1}{2} \sum_{n = <2>} e^{-jk\frac{2\pi}{2}n} = \frac{1}{2} \sum_{n = <2>} x[n](-1)^{-kn} \\ \begin{bmatrix} a_0\\a_1 \end{bmatrix} &= \frac{1}{2} \begin{bmatrix} 1 & 1\\1 & -1 \end{bmatrix} \begin{bmatrix} x[0]\\x[1] \end{bmatrix} \\ a_k &= a_{k+4} = \frac{1}{4} \sum_{n = <4>} x[n] e^{-jk\Omega_0 n} = \frac{1}{4} \sum_{n = <4>} e^{-jk\frac{2\pi}{4}n} = \frac{1}{4} \sum_{n = <4>} x[n] j^{-kn} \\ \begin{bmatrix} a_0\\a_1\\a_2\\a_3 \end{bmatrix} &= \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1\\1 & -j & -1 & j\\1 & -1 & 1 & -1\\1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} x[0]\\x[1]\\x[2]\\x[3] \end{bmatrix} \\ \text{Number of multiples increases as } N^2. \end{split}$$

Fast Four	Fast Fourier "Transform"								
Exploit stru	cture	of Fo	ourier	series	to si	mplify	/ its c	alcula	tion.
Divide FS o	f leng	gth 2N	√ into	two o	of len	gth N	(divi	de an	d conquer).
Matrix form	ulatic	on of	8-poir	nt FS:					
[<i>c</i> 0]	W_8^0	W_{8}^{0}	W_{8}^{0}	W_{8}^{0}	W_{8}^{0}	W_8^0	W_{8}^{0}	W_8^0 ך	$\lceil x[0] \rceil$
c_1	W_{8}^{0}	W_8^1	W_{8}^{2}	$W_8^0 \\ W_8^3 \\ W_8^6 \\ W_8^6 \\ W_8^1$	W_8^4	W_{2}^{5}	W_0^6	W_8^7	x[1]
<i>c</i> ₂	W_{8}^{0}	W_{8}^{2}	W_8^4	W_{8}^{6}	W_8^0	W_{8}^{2}	W_8^4	W_8^6	x[2]
<i>c</i> ₃	W_{8}^{0}	W_{8}^{3}	W_{8}^{6}	W_8^1	W_8^4	W'_{2}	W_{2}^{2}	W_{8}^{5}	x[3]
$\begin{vmatrix} c_4 \end{vmatrix} =$	W_{8}^{0}	W_{8}^{4}	W_{8}^{0}	W_{8}^{4}	W_{8}^{0}	W_{8}^{4}	W_{8}^{0}	W_{8}^{4}	x[4]
c_5	W_{8}^{0}	W_{8}^{5}	W_{8}^{2}	W_{8}^{7}	W_{8}^{4}	W_8^1	$W_8^0 W_8^6 W_8^6 W_8^4 W_8^4 W_8^2$	W_8^3 W_8^2	x[5]
c_6	W_{8}^{0}	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	W_{8}^{0}	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	x[6]
$\lfloor c_7 \rfloor$	W_{8}^{0}	W_{8}^{7}	W_{8}^{6}	$W_8^4 = W_8^7 = W_8^7 = W_8^2 = W_8^5 = W_8^5$	W_{8}^{4}	W_{8}^{3}	W_{8}^{2}	W_8^1	$\lfloor x[7] \rfloor$
where $W_N=e^{-jrac{2\pi}{N}}$									
$8 \times 8 = 64$ multiplications									

FFT

Break the original 8-point DTFS coefficients \boldsymbol{c}_k into two parts:

$$c_k = d_k + e_k$$

where d_k comes from the even-numbered x[n] (e.g., a_k) and e_k comes from the odd-numbered x[n] (e.g., b_k)

		:	r 1.	
Odd-numbered	entries	m	x n :	

Even-numbered entries in x[n]:

$\begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$	$\begin{bmatrix} W_4^0 \\ W_4^0 \end{bmatrix}$	W_4^0 W_4^1	$W_4^0 \\ W_4^2$	$\begin{bmatrix} W_4^0 \\ W_4^3 \end{bmatrix}$	$\begin{bmatrix} x[1] \\ x[3] \end{bmatrix}$
$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} =$	$\begin{bmatrix} W_{4}^{0} \\ W_{4}^{0} \\ W_{4}^{0} \\ W_{4}^{0} \end{bmatrix}$	$W_4^2 = W_4^3$	$W_4^0 = W_4^2$	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\$	$\begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[7] \end{bmatrix}$

Divide into two 4-point series (divide and conquer).

 $\begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix}$

Sum of multiplications $= 2 \times (4 \times 4) = 32$: fewer than the previous 64.

6.003: Signals and Systems

Lecture 19

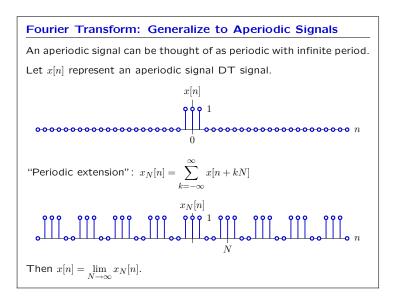
FFT					
The 4-point DT	FS coeffici	ients a_k of the eve	n-number	red $x[n]$	
$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} W_4^0 \\ W_4^0 \\ W_4^0 \\ W_4^0 \end{bmatrix}$	$\begin{array}{ccc} W^0_4 & W^0_4 \\ W^1_4 & W^2_4 \\ W^2_4 & W^0_4 \\ W^3_4 & W^2_4 \end{array}$	$ \begin{bmatrix} W_4^0 \\ W_4^3 \\ W_4^2 \\ W_4^2 \\ W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix} = \begin{bmatrix} W_8^0 \\ W_8^0 \\ W_8^0 \\ W_8^0 \end{bmatrix} $	W_8^2 W W_8^4 W	$ \begin{bmatrix} W_8^0 & W_8^0 \\ W_8^4 & W_8^6 \\ W_8^0 & W_8^4 \\ W_8^4 & W_8^2 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix} $	
contribute to the 8-point DTFS coefficients d_k :					
$\begin{bmatrix} d_0 \\ d_0 \end{bmatrix} \begin{bmatrix} a_0 \end{bmatrix}$	$\begin{bmatrix} W_8^0 \\ W^0 \end{bmatrix}$	$W_8^0 = W_8^0$	W_8^0 -	$\begin{bmatrix} x[0] \end{bmatrix}$	
$ \begin{array}{c c} d_1 & a_1 \\ d_2 & a_2 \end{array} $	$\begin{bmatrix} W_8^0 \\ W_8^0 \end{bmatrix}$	$egin{array}{ccc} W_8^2 & W_8^4 \ W_8^4 & W_8^0 \ \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$W_8^6 \\ W_8^4$	x[2]	
$\begin{vmatrix} d_3 \\ d_4 \end{vmatrix} = \begin{vmatrix} a_3 \\ a_0 \end{vmatrix}$	$= \begin{vmatrix} W_8^0 \\ W_8^0 \end{vmatrix}$	$egin{array}{ccc} W_8^6 & W_8^4 \ W_8^0 & W_8^0 \ \end{array} \ W_8^0 & W_8^0 \end{array}$	$W_8^2 \\ W_8^0$	x[4]	
$egin{array}{ccc} d_5 & a_1 \ d_6 & a_2 \ d_6 & a_2 \end{array}$	$W_8^0 = W_8^0 = W_8^0$	$W_8^2 = W_8^4 = W_8^4 = W_8^4 = W_8^0 = W_8^4 = W_8^$	$W_8^6 \\ W_8^4 \\ W_8^2$	x[6]	
$\lfloor d_7 \rfloor \lfloor a_3 \rfloor$	LW_8^0	$W_8^6 = W_8^4$	W_8^2 .	JLJ	

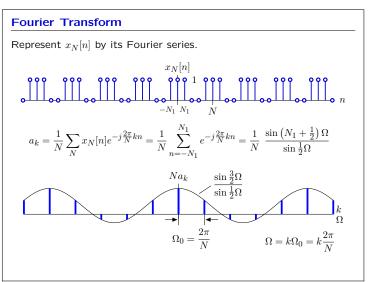
FFT		
The e_k components result	from the odd-num	ber entries in $x[n]$.
$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 \\ W_4^0 & W_4^2 & W_4^0 \\ W_4^0 & W_4^3 & W_4^2 \end{bmatrix}$	$ \begin{bmatrix} W_4^0 \\ W_4^3 \\ W_4^2 \\ W_4^2 \\ W_4^1 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[7] \end{bmatrix} = \begin{bmatrix} W_8^0 \\ W_8^0 \\ W_8^0 \\ W_8^0 \end{bmatrix} $	$ \begin{array}{cccc} W_8^0 & W_8^0 & W_8^0 \\ W_8^2 & W_8^4 & W_8^0 \\ W_8^4 & W_8^0 & W_8^4 \\ W_8^6 & W_8^4 & W_8^2 \\ \end{array} \begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[7] \end{bmatrix} $
$\begin{bmatrix} e_0\\ e_1\\ e_2\\ e_3\\ e_4\\ e_5\\ e_6\\ e_7 \end{bmatrix} = \begin{bmatrix} W_8^0 b_0\\ W_8^1 b_1\\ W_8^2 b_2\\ W_8^3 b_3\\ W_8^4 b_0\\ W_8^5 b_1\\ W_8^6 b_2\\ W_8^7 b_3 \end{bmatrix} =$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} W_8^0 & W_8^0 \\ W_8^5 & W_8^7 \\ W_8^2 & W_8^6 \\ W_8^7 & W_8^5 \\ W_8^4 & W_8^4 \\ W_8^1 & W_8^3 \\ W_8^6 & W_8^2 \\ W_8^3 & W_8^1 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \\ x[3] \\ x[5] \\ x[5] \\ x[7] \end{bmatrix} $

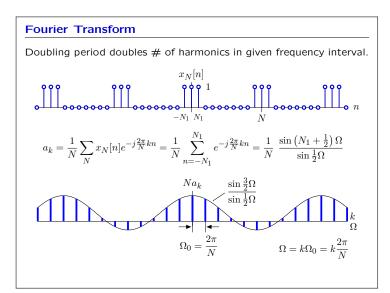
FFT					
Combine a_k and b_k to get c_k .					
$\begin{bmatrix} c_0\\c_1\\c_2\\c_3\\c_4\\c_5\\c_6\\c_7 \end{bmatrix} = \begin{bmatrix} d_0 + e_0\\d_1 + e_1\\d_2 + e_2\\d_3 + e_3\\d_4 + e_4\\d_5 + e_5\\d_6 + e_6\\d_7 + e_7 \end{bmatrix} = \begin{bmatrix} a_0\\a_1\\a_2\\a_3\\a_0\\a_1\\a_2\\a_3 \end{bmatrix} + \begin{bmatrix} W_8^0 b_0\\W_8^1 b_1\\W_8^2 b_2\\W_8^3 b_3\\W_8^4 b_0\\W_8^5 b_1\\W_8^5 b_1\\W_8^6 b_2\\W_8^7 b_3 \end{bmatrix}$					
FFT procedure: • compute a_k and b_k : $2 \times (4 \times 4) = 32$ multiplies • combine $c_k = a_k + W_8^k b_k$: 8 multiples					

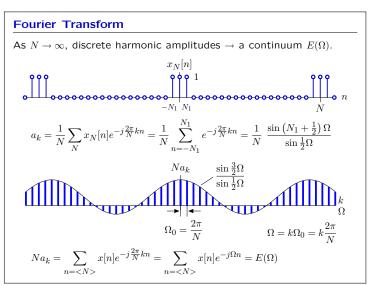
• total 40 multiplies: fewer than the orginal $8\times8=64$ multiplies

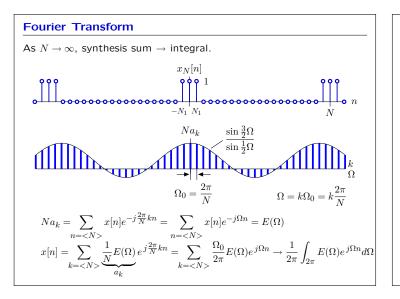
Sca	aling of FFT algorithm
How	v does the new algorithm scale?
Let	M(N) = number of multiplies to perform an N point FFT.
	M(1) = 0
	M(2) = 2M(1) + 2 = 2
	$M(4) = 2M(2) + 4 = 2 \times 4$
	$M(8) = 2M(4) + 8 = 3 \times 8$
	$M(16) = 2M(8) + 16 = 4 \times 16$
	$M(32) = 2M(16) + 32 = 5 \times 32$
	$M(64) = 2M(32) + 64 = 6 \times 64$
	$M(128) = 2M(64) + 128 = 7 \times 128$
	$M(N) = (\log_2 N) \times N$
Sigr	nificantly smaller than N^2 for N large.











Fourier Transform

Replacing $E(\Omega)$ by $X(e^{j\Omega})$ yields the DT Fourier transform relations.

$$\begin{split} X(e^{j\Omega}) &= \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n} & (\text{``analysis'' equation}) \\ x[n] &= \frac{1}{2\pi} \int_{2\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega & (\text{``synthesis'' equation}) \end{split}$$

Relation between Fourier and Z Transforms

If the Z transform of a signal exists and if the ROC includes the unit circle, then the Fourier transform is equal to the Z transform evaluated on the unit circle.

Z transform:

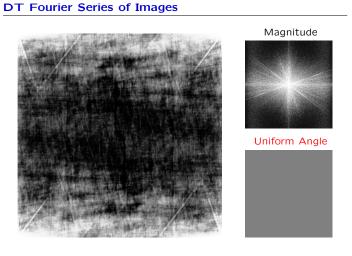
$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$

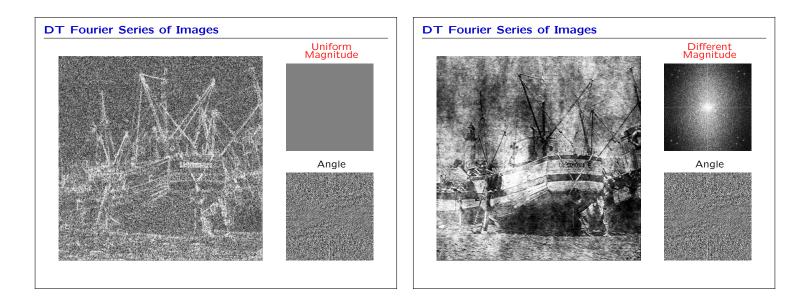
DT Fourier transform:

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = H(z)\big|_{z=e^{j\Omega}}$$

Relation between Fourier and Z Transforms						
Fourier transform "inherits" properties of Z transform.						
Property	x[n]	X(z)	$X(e^{j\Omega})$			
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(s) + bX_2(s)$	$aX_1(e^{j\Omega}) + bX_2(e^{j\Omega})$			
Time shift	$x[n - n_0]$	$z^{-n_0}X(z)$	$e^{-j\Omega n_0}X(e^{j\Omega})$			
Multiply by n	nx[n]	$-z\frac{d}{dz}X(z)$	$j\frac{d}{d\Omega}X(e^{j\Omega})$			
Convolution	$(x_1 \ast x_2)[n]$	$X_1(z) \times X_2(z)$	$X_1(e^{j\Omega})\times X_2(e^{j\Omega})$			







Fourier Representations: Summary

Thinking about signals by their frequency content and systems as filters has a large number of practical applications.