6.003: Signals and Systems

Sampling

April 27, 2010

Mid-term Examination \#3

Tomorrow: Wednesday, April 28, 7:30-9:30pm, 34-101.
No recitations tomorrow.

Coverage: Lectures 1-20
Recitations 1-20
Homeworks 1-11

Homework 11 will not collected or graded. Solutions are posted.

Closed book: 3 pages of notes ($8 \frac{1}{2} \times 11$ inches; front and back).

Designed as 1-hour exam; two hours to complete.

Sampling

Conversion of a continuous-time signal to discrete time.

We have used sampling a number of times before.
Today: new insights from Fourier representations.

Sampling

Sampling allows the use of modern digital electronics to process, record, transmit, store, and retrieve CT signals.

- audio: MP3, CD, cell phone
- pictures: digital camera, printer
- video: DVD
- everything on the web

Sampling

Sampling is pervasive.
Example: digital cameras record sampled images.

Sampling

Photographs in newsprint are "half-tone" images. Each point is black or white and the average conveys brightness.

Sampling

Zoom in to see the binary pattern.

Sampling

Even high-quality photographic paper records discrete images. When AgBr crystals ($0.04-1.5 \mu \mathrm{~m}$) are exposed to light, some of the Ag is reduced to metal. During "development" the exposed grains are completely reduced to metal and unexposed grains are removed.

Sampling

Every image that we see is sampled by the retina, which contains \approx 100 million rods and 6 million cones (average spacing $\approx 3 \mu \mathrm{~m}$) which act as discrete sensors.

http://webvision.med.utah.edu/imageswv/sagschem.jpeg

Check Yourself

Your retina is sampling this slide, which is composed of 1024×768 pixels.

Is the spatial sampling done by your rods and cones adequate to resolve individual pixels in this slide?

Check Yourself

The spacing of rods and cones limits the angular resolution of your retina to approximately

$$
\theta_{\text {eye }}=\frac{\mathrm{rod} / \text { cone spacing }}{\text { diameter of eye }} \approx \frac{3 \times 10^{-6} \mathrm{~m}}{3 \mathrm{~cm}} \approx 10^{-4} \text { radians }
$$

The angle between pixels viewed from the center of the classroom is approximately

$$
\theta_{\text {pixels }}=\frac{\text { screen size } / 1024}{\text { distance to screen }} \approx \frac{3 \mathrm{~m} / 1024}{10 \mathrm{~m}} \approx 3 \times 10^{-4} \text { radians }
$$

Light from a single pixel falls upon multiple rods and cones.

Sampling

How does sampling affect the information contained in a signal?

Sampling

We would like to sample in a way that preserves information, which may not seem possible.

Information between samples is lost. Therefore, the same samples can represent multiple signals.

$$
\cos \frac{7 \pi}{3} n ? \quad \cos \frac{\pi}{3} n ?
$$

Sampling and Reconstruction

To determine the effect of sampling, compare the original signal $x(t)$ to the signal $x_{p}(t)$ that is reconstructed from the samples $x[n]$.

Uniform sampling (sampling interval T).

Impulse reconstruction.

Reconstruction

Impulse reconstuction produces a signal $x_{p}(t)$ that is equal to the original signal $x(t)$ multiplied by an impulse train.

$$
\begin{aligned}
x_{p}(t) & =\sum_{n=-\infty}^{\infty} x[n] \delta(t-n T) \\
& =\sum_{n=-\infty}^{\infty} x(n T) \delta(t-n T) \\
& =\sum_{n=-\infty}^{\infty} x(t) \delta(t-n T) \\
& =x(t) \underbrace{\sum_{n=-\infty}^{\infty} \delta(t-n T)}_{\equiv p(t)}
\end{aligned}
$$

$x_{p}(t)$ is motivated by impulse reconstruction (top line)

- can be understood entirely within CT framework (bottom line)

Sampling

Multiplication by an impulse train in time is equivalent to convolution by an impulse train in frequency.
\rightarrow generates multiple copies of original frequency content.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Check Yourself

What is the relation between the DTFT of $x[n]=x(n T)$ and the CTFT of $x_{p}(t)=\sum x[n] \delta(t-n T)$ for $X(j \omega)$ below.

1. $X_{p}(j \omega)=\left.X\left(e^{j \Omega}\right)\right|_{\Omega=\omega}$
2. $X_{p}(j \omega)=\left.X\left(e^{j \Omega}\right)\right|_{\Omega=\frac{\omega}{T}}$
3. $X_{p}(j \omega)=\left.X\left(e^{j \Omega}\right)\right|_{\Omega=\omega T}$
4. $\quad X_{p}(j \omega)=\left.X\left(e^{j \Omega}\right)\right|_{\Omega=\omega}$
5. none of the above

Check Yourself

DTFT

$$
X\left(e^{j \Omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}
$$

CTFT of $x_{p}(t)$

$$
\begin{aligned}
X_{p}(j \omega) & =\int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x[n] \delta(t-n T) e^{-j \omega t} d t \\
& =\sum_{n=-\infty}^{\infty} x[n] \int_{-\infty}^{\infty} \delta(t-n T) e^{-j \omega t} d t \\
& =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n T} \\
& =\left.X\left(e^{j \Omega}\right)\right|_{\Omega=\omega T}
\end{aligned}
$$

Check Yourself

$$
X_{p}(j \omega)=\left.X\left(e^{j \Omega}\right)\right|_{\Omega=\omega T}
$$

Check Yourself

What is the relation between the DTFT of $x[n]=x(n T)$ and the CTFT of $x_{p}(t)=\sum x[n] \delta(t-n T)$ for $X(j \omega)$ below.

1. $X_{p}(j \omega)=\left.X\left(e^{j \Omega}\right)\right|_{\Omega=\omega}$
2. $X_{p}(j \omega)=\left.X\left(e^{j \Omega}\right)\right|_{\Omega=\frac{\omega}{T}}$
3. $X_{p}(j \omega)=\left.X\left(e^{j \Omega}\right)\right|_{\Omega=\omega T}$
4. $\quad X_{p}(j \omega)=\left.X\left(e^{j \Omega}\right)\right|_{\Omega=\omega}$
5. none of the above

Sampling

The high frequency copies can be removed with a low-pass filter (also multiply by T to undo the amplitude scaling).

$$
X_{-\frac{\omega_{s}}{2}}^{X_{p}(j \omega)=\frac{1}{2}}(X(j \cdot) * P(j \cdot))(\omega)
$$

Impulse reconstruction followed by ideal low-pass filtering is called bandlimited reconstruction.

The Sampling Theorem

If signal is bandlimited \rightarrow sample without loosing information.

If $x(t)$ is bandlimited so that

$$
X(j \omega)=0 \quad \text { for } \quad|\omega|>\omega_{m}
$$

then $x(t)$ is uniquely determined by its samples $x(n T)$ if

$$
\omega_{s}=\frac{2 \pi}{T}>2 \omega_{m}
$$

The minimum sampling frequency, $2 \omega_{m}$, is called the "Nyquist rate."

Summary

Three important ideas.

Sampling

$$
x(t) \rightarrow x[n]=x(n T)
$$

Bandlimited Reconstruction

Sampling Theorem: If $X(j \omega)=0 \forall|\omega|>\frac{\omega_{s}}{2}$ then $x_{r}(t)=x(t)$.

Check Yourself

We can hear sounds with frequency components between 20 Hz and 20 kHz .

What is the maximum sampling interval T that can be used to sample a signal without loss of audible information?

1. $100 \mu \mathrm{~s}$
2. $50 \mu s$
3. $25 \mu s$
4. $100 \pi \mu s$
5. $50 \pi \mu s$
6. $25 \pi \mu s$

Check Yourself

$$
\begin{aligned}
& 2 \pi f_{m}=\omega_{m}<\frac{\omega_{s}}{2}=\frac{2 \pi}{2 T} \\
& T<\frac{1}{2 f_{m}}=\frac{1}{2 \times 20 \mathrm{kHz}}=25 \mu \mathrm{~s}
\end{aligned}
$$

Check Yourself

We can hear sounds with frequency components between 20 Hz and 20 kHz .

What is the maximum sampling interval T that can be used to sample a signal without loss of audible information?

1. $100 \mu s$
2. $50 \mu s$
3. $25 \mu s$
4. $100 \pi \mu s$
5. $50 \pi \mu s$
6. $25 \pi \mu s$

CT Model of Sampling and Reconstruction

Sampling followed by bandlimited reconstruction is equivalent to multiplying by an impulse train and then low-pass filtering.

Aliasing

What happens if X contains frequencies $|\omega|>\frac{\pi}{T}$?

$$
X(j \omega)
$$

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

What happens if X contains frequencies $|\omega|>\frac{\pi}{T}$?

$$
X(j \omega)
$$

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

What happens if X contains frequencies $|\omega|>\frac{\pi}{T}$?

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

What happens if X contains frequencies $|\omega|>\frac{\pi}{T}$?

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

The effect of aliasing is to wrap frequencies.
Output frequency

$X(j \omega)$

Aliasing

The effect of aliasing is to wrap frequencies.
Output frequency

$X(j \omega)$
4

Aliasing

The effect of aliasing is to wrap frequencies.
Output frequency

Aliasing

The effect of aliasing is to wrap frequencies.
Output frequency

Check Yourself

A periodic signal with a period of 0.1 ms is sampled at 44 kHz .
To what frequency does the eighth harmonic alias?

1. 18 kHz
2. 16 kHz
3. 14 kHz
4. 8 kHz
5. 6 kHz
6. none of the above

Check Yourself

Output frequency (kHz)

Check Yourself

Output frequency (kHz)

Harmonic 10 kHz
20 kHz 30 kHz 40 kHz
50 kHz
60 kHz
70 kHz
80 kHz

Alias
10 kHz
20 kHz
$44 \mathrm{kHz}-30 \mathrm{kHz}=14 \mathrm{kHz}$
$44 \mathrm{kHz}-40 \mathrm{kHz}=4 \mathrm{kHz}$
$50 \mathrm{kHz}-44 \mathrm{kHz}=6 \mathrm{kHz}$
$60 \mathrm{kHz}-44 \mathrm{kHz}=16 \mathrm{kHz}$
$88 \mathrm{kHz}-70 \mathrm{kHz}=18 \mathrm{kHz}$
$88 \mathrm{kHz}-80 \mathrm{kHz}=8 \mathrm{kHz}$

Check Yourself

A periodic signal with a period of 0.1 ms is sampled at 44 kHz .
To what frequency does the eighth harmonic alias?

1. 18 kHz
2. 16 kHz
3. 14 kHz
4. 8 kHz
5. 6 kHz
6. none of the above

Aliasing

High frequency components of complex signals also wrap.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

High frequency components of complex signals also wrap.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

High frequency components of complex signals also wrap.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

High frequency components of complex signals also wrap.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

Aliasing increases as the sampling rate decreases.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

Aliasing increases as the sampling rate decreases.

Aliasing

Aliasing increases as the sampling rate decreases.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

Aliasing increases as the sampling rate decreases.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing Demonstration

Sampling Music

$$
\omega_{s}=\frac{2 \pi}{T}=2 \pi f_{s}
$$

- $f_{s}=44.1 \mathrm{kHz}$
- $f_{s}=22 \mathrm{kHz}$
- $f_{s}=11 \mathrm{kHz}$
- $f_{s}=5.5 \mathrm{kHz}$
- $f_{s}=2.8 \mathrm{kHz}$
J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto Nathan Milstein, violin

Aliasing

Aliasing increases as the sampling rate decreases.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

Aliasing increases as the sampling rate decreases.

Aliasing

Aliasing increases as the sampling rate decreases.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

Aliasing increases as the sampling rate decreases.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Anti-Aliasing Filter

To avoid aliasing, remove frequency components that alias before sampling.

Aliasing

Aliasing increases as the sampling rate decreases.

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

Aliasing increases as the sampling rate decreases.

Aliasing

Aliasing increases as the sampling rate decreases.
Anti-aliased $X(j \omega)$

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Aliasing

Aliasing increases as the sampling rate decreases.
Anti-aliased $X(j \omega)$

$$
X_{p}(j \omega)=\frac{1}{2 \pi}(X(j \cdot) * P(j \cdot))(\omega)
$$

Anti-Aliasing Demonstration

Sampling Music

$$
\omega_{s}=\frac{2 \pi}{T}=2 \pi f_{s}
$$

- $f_{s}=11 \mathrm{kHz}$ without anti-aliasing
- $f_{s}=11 \mathrm{kHz}$ with anti-aliasing
- $f_{s}=5.5 \mathrm{kHz}$ without anti-aliasing
- $f_{s}=5.5 \mathrm{kHz}$ with anti-aliasing
- $f_{s}=2.8 \mathrm{kHz}$ without anti-aliasing
- $f_{s}=2.8 \mathrm{kHz}$ with anti-aliasing
J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto Nathan Milstein, violin

Sampling: Summary

Effects of sampling are easy to visualize with Fourier representations.
Signals that are bandlimited in frequency (e.g., $-W<\omega<W$) can be sampled without loss of information.

The minimum sampling frequency for sampling without loss of information is called the Nyquist rate. The Nyquist rate is twice the highest frequency contained in a bandlimited signal.

Sampling at frequencies below the Nyquist rate causes aliasing.
Aliasing can be eliminated by pre-filtering to remove frequency components that would otherwise alias.

