Lecture 25 Multistage Amplifiers (II) DC VOLTAGE AND CURRENT SOURCES

Outline

- 1. DC Voltage Sources
- 2. DC Current Sources and Sinks
- 3. Introduction to Differential Amplifiers

Reading Assignment:

Howe and Sodini, Chapter 9, Sections 9-3-9.4

Summary of Key Concepts

- *Voltage source* easily synthesized from *current source* using MOSFET in diode configuration
- *Current source* easily synthesized from *current source* using **current mirror** circuit.
- Multiple current sources and sinks with different magnitudes can be synthesized from a single current source.
- Voltage and current sources rely on the availability of well "matched" transistors in IC technology.
- In differential amplifiers, signals are represented by *difference* between two voltages

1. DC Voltage Sources

Characteristics of DC Voltage Sources :

- A well controlled output voltage
- Output voltage does not depend on current drawn from source ⇒ *Low Thevenin Resistance*

Consider a MOSFET connected in "diode configuration"

I-V characteristics:

$$\mathbf{I}_{\mathbf{D}} = \frac{\mathbf{W}}{2\mathbf{L}} \boldsymbol{\mu}_{\mathbf{n}} \mathbf{C}_{\mathbf{ox}} (\mathbf{V}_{\mathbf{GS}} - \mathbf{V}_{\mathbf{Tn}})^2 = \frac{\mathbf{W}}{2\mathbf{L}} \boldsymbol{\mu}_{\mathbf{n}} \mathbf{C}_{\mathbf{ox}} (\mathbf{V}_{\mathbf{DS}} - \mathbf{V}_{\mathbf{Tn}})^2$$

Beyond the threshold voltage, the MOSFET looks like a "diode" with quadratic I-V characteristics

How does one synthesize a voltage source with this?

Assume a current source is available

 $V_{GS} = V_{DS}$ takes a value needed to sink current

$$\mathbf{I}_{\mathbf{D}} = \mathbf{I}_{\mathbf{R}\mathbf{E}\mathbf{F}} + \mathbf{i}_{\mathbf{O}\mathbf{U}\mathbf{T}} = \frac{\mathbf{W}}{2\mathbf{L}}\boldsymbol{\mu}_{\mathbf{n}}\mathbf{C}_{\mathbf{o}\mathbf{x}}(\mathbf{v}_{\mathbf{O}\mathbf{U}\mathbf{T}} - \mathbf{V}_{\mathbf{T}\mathbf{n}})^2$$

Then:

$$\mathbf{i}_{OUT} = \frac{\mathbf{W}}{2\mathbf{L}} \boldsymbol{\mu}_{n} \mathbf{C}_{ox} (\mathbf{v}_{OUT} - \mathbf{V}_{Tn})^{2} - \mathbf{I}_{REF}$$

Solving for v_{OUT}:

$$\mathbf{v}_{\text{OUT}} = \mathbf{V}_{\text{Tn}} + \sqrt{\frac{\mathbf{I}_{\text{REF}} + \mathbf{i}_{\text{OUT}}}{\frac{\mathbf{W}}{2\mathbf{L}}\mu_{n}\mathbf{C}_{\text{ox}}}}$$

Synthesizing Voltage Sources (contd.)

 v_{OUT} is a function of I_{REF} and W/L of MOSFET:

•
$$I_{\text{REF}} \uparrow \Rightarrow v_{\text{OUT}} \uparrow$$

• $W/L \uparrow \Rightarrow v_{\text{OUT}} \downarrow$

Small Signal Equivalent Circuit Model:

PMOS voltage source

Same operation and characteristics as NMOS voltage source. PMOS needs to be larger to attain the same R_{out} .

3. DC Current Sources and Sinks

Characteristics of Current Sources

- A well controlled output current
- Supplied current does not depend on output voltage ⇒ *High Thevenin Resistance*

Connect a voltage source to the gate of another MOSFET:

 I_{OUT} scales with I_{REF} by W/L ratios of two MOSFETs \Rightarrow *Current Mirror Circuit*

Well "matched" transistors important.

DC Current Sources and Sinks (contd.)

Small Signal Equivalent Circuit Model:

 $\mathbf{R}_{\mathbf{out}\,2} = \mathbf{r}_{\mathbf{o}\,2}$

I-V characteristics of NMOS current source:

PMOS Current Source

- NMOS current source sinks current to ground
- PMOS current source sources current from positive supply

PMOS Current Mirror:

3. Multiple Current Sources

Since there is no DC gate current in MOSFET, we can tie up multiple current mirrors to single current source:

Similar idea with NMOS current sinks:

Multiple Current Sources and Sinks

Often, in a given circuit, we need current sources and sinks. We can build them all out of a single current source.

Generating I_{REF}

Simple circuit:

For large W/L:	T ~	$V_{DD} - V_{DD}$	V _{Tn}
	∎ _{REF} ~	R	

- Advantages
 - I_{REF} set by value of resistor
- Disadvantages
 - V_{DD} also affects I_{REF}.
 - V_{Tn} and R are functions of temperature $\Rightarrow I_{REF}(T)$.

In the real world, more sophisticated circuits are used to generate I_{REF} that are V_{DD} and T independent.

Can now understand more complex circuits? Examples:

+3V M_{2B} M_{2B} M_{2} M_{2} M_{2} M_{2} M_{2} M_{4} M_{4} M_{4} M_{4} M_{3} K_{2} M_{3} K_{2} K_{2

3. Introduction to Differential Amplifiers

Two problems found in single-transistor amplifier stages are:

- Bias and gain sensitivity to device parameters (μC_{ox} , V_T)
 - Sensitivity can be mitigated but often at a price in terms of performance or cost (gain, power, device area, etc.)
- Vulnerability to ground and power supply noise
 - In dense IC's there is cross-talk, 60 Hz coupling, substrate noise, etc.

Introduction (contd.)

Solution : represent relevant signal by the difference between two voltages

Differential Amplifier:

- Amplifies **difference** between two voltages
- Rejects components **common** to both voltages

MOSFET Differential Amplifier Basic Configuration

- v_0 responds to difference between v_1 's
 - If $v_{I1} = v_{I2} \Rightarrow$ symmetry $\Rightarrow v_{O1} = v_{O2} \Rightarrow v_{O} = 0$
 - If $v_{I1} > v_{I2} \Rightarrow M1$ conducts more than $M2 \Rightarrow i_1 > i_2$ $\Rightarrow v_{O1} < v_{O2} \Rightarrow v_O < 0$
- v_0 insensitive to common mode signals:
 - If both v_{O1} and v_{O2} move in sync, symmetry is preserved $\Rightarrow v_O$ unchanged
 - If ground V_{DD} or V_{SS} have noise, symmetry preserved $\Rightarrow v_0$ unchanged
 - If V_T or μC_{ox} change, symmetry preserved $\Rightarrow v_0$ unchanged.
- Need precise device matching

Differential-mode and Common-mode signals

Distinguish between common-mode and differential-mode:

$$\mathbf{v}_{\mathbf{I}\mathbf{I}} = \mathbf{v}_{\mathbf{I}\mathbf{C}} + \frac{\mathbf{v}_{\mathbf{I}\mathbf{D}}}{2}, \qquad \mathbf{v}_{\mathbf{I}\mathbf{2}} = \mathbf{v}_{\mathbf{I}\mathbf{C}} - \frac{\mathbf{v}_{\mathbf{I}\mathbf{D}}}{2}$$

Then:

$$v_{ID} = v_{I1} - v_{I2}, \qquad v_{IC} = \frac{v_{I1} + v_{I2}}{2}$$

Similarly at the output:

$$\mathbf{v}_{01} = \mathbf{v}_{0C} + \frac{\mathbf{v}_{0D}}{2}, \qquad \mathbf{v}_{02} = \mathbf{v}_{0C} - \frac{\mathbf{v}_{0D}}{2}$$

Then:

$$v_{OD} = v_{O1} - v_{O2}, \qquad v_{OC} = \frac{v_{O1} + v_{O2}}{2}$$

What did we learn today?

Summary of Key Concepts

- *Voltage source* easily synthesized from *current source* using MOSFET in diode configuration
- *Current source* easily synthesized from *current source* using **current mirror** circuit.
- Multiple current sources and sinks with different magnitudes can be synthesized from a single current source.
- Voltage and current sources rely on the availability of well "matched" transistors in IC technology.
- In differential amplifiers, signals are represented by *difference* between two voltages