Lecture 26 Differential Amplifiers (I) DIFFERENTIAL AMPLIFIERS

Outline

- 1. Introduction
- 2. Incremental analysis of differential amplifier
- 3. Common-source differential amplifier

Reading Assignment:

Howe and Sodini, Chapter 11, Sections 11-1-11.3, 11.6

Summary of Key Concepts

- In differential amplifiers, signals are represented by *difference* between two voltages
- Differential amplifier amplifies the difference between two voltages but rejects "*common mode*" signals
 - \Rightarrow Improved noise immunity
- Using "*half-circuit*" technique, small-signal operation of differential amplifiers is analyzed by breaking the problem into two simpler ones
 - *Differential mode* problem
 - *Common mode* problem
- *Common-mode rejection ratio* (CMRR) is an important figure of merit for differential amplifiers
- Differential amplifiers require good device matching

1. Introduction

Two problems found in single-transistor amplifier stages are:

- Bias and gain sensitivity to device parameters (μC_{ox} , V_T)
 - Sensitivity can be mitigated but often at a price in terms of performance or cost (gain, power, device area, etc.)
- Vulnerability to ground and power supply noise
 - In dense IC's there is cross-talk, 60 Hz coupling, substrate noise, etc.

Introduction (contd.)

Solution : represent relevant signal by the difference between two voltages

Differential Amplifier:

- Amplifies **difference** between two voltages
- Rejects components **common** to both voltages

MOSFET Differential Amplifier Basic Configuration

- v_0 responds to difference between v_1 's
 - If $v_{I1} = v_{I2} \Rightarrow$ symmetry $\Rightarrow v_{O1} = v_{O2} \Rightarrow v_{O} = 0$
 - If $v_{I1} > v_{I2} \Rightarrow M1$ conducts more than $M2 \Rightarrow i_1 > i_2$ $\Rightarrow v_{O1} < v_{O2} \Rightarrow v_O < 0$
- v_0 insensitive to common mode signals:
 - If both v_{O1} and v_{O2} move in sync, symmetry is preserved $\Rightarrow v_O$ unchanged
 - If ground V_{DD} or V_{SS} have noise, symmetry preserved $\Rightarrow v_0$ unchanged
 - If V_T or μC_{ox} change, symmetry preserved $\Rightarrow v_0$ unchanged.
- Need precise device matching

Differential-mode and Common-mode signals

Distinguish between common-mode and differential-mode:

$$\mathbf{v}_{\mathbf{I}\mathbf{I}} = \mathbf{v}_{\mathbf{I}\mathbf{C}} + \frac{\mathbf{v}_{\mathbf{I}\mathbf{D}}}{2}, \qquad \mathbf{v}_{\mathbf{I}\mathbf{2}} = \mathbf{v}_{\mathbf{I}\mathbf{C}} - \frac{\mathbf{v}_{\mathbf{I}\mathbf{D}}}{2}$$

Then:

$$v_{ID} = v_{I1} - v_{I2}, \qquad v_{IC} = \frac{v_{I1} + v_{I2}}{2}$$

Similarly at the output:

$$\mathbf{v}_{01} = \mathbf{v}_{0C} + \frac{\mathbf{v}_{0D}}{2}, \qquad \mathbf{v}_{02} = \mathbf{v}_{0C} - \frac{\mathbf{v}_{0D}}{2}$$

Then:

$$\mathbf{v}_{00} = \mathbf{v}_{01} - \mathbf{v}_{02}, \qquad \mathbf{v}_{00} = \frac{\mathbf{v}_{01} + \mathbf{v}_{02}}{2}$$

2. Incremental analysis of differential amplifier

Consider generic differential amplifier:

Figures of Merit:

Differential-mode voltage gain (want it high):

$$\mathbf{a}_{\mathrm{dm}} = \frac{\mathbf{v}_{\mathrm{od}}}{\mathbf{v}_{\mathrm{id}}}$$

Common-mode voltage gain (want it small):

$$\mathbf{a}_{cm} = \frac{\mathbf{v}_{oc}}{\mathbf{v}_{ic}}$$

Common-mode rejection ratio (want it very high):

$$\mathbf{CMRR} = \frac{\mathbf{a}_{dm}}{\mathbf{a}_{cm}}$$

Incremental analysis of differential amplifier (contd.)

Two steps to simplify the problem:

1. Use superposition and break the problem into two:

Incremental analysis of differential amplifier Differential-mode Analysis

No voltage relative to ground along axis of symmetry \Rightarrow circuit identical to:

Incremental analysis of differential amplifier Differential-mode Analysis (contd.)

Need to solve:

Differential-mode voltage gain:

$$\mathbf{a_{dm}} = \frac{\mathbf{v_{od}}}{\mathbf{v_{id}}} = \frac{\mathbf{v_{o2}} - \mathbf{v_{o1}}}{\mathbf{v_{i2}} - \mathbf{v_{i1}}}$$

In differential -mode:

$$\mathbf{v}_{i1} = -\mathbf{v}_{i2} = \frac{\mathbf{v}_{id}}{2}$$
 and $\mathbf{v}_{o1} = -\mathbf{v}_{o2}$

Then:

$$\mathbf{a}_{dm} = \frac{2\mathbf{v}_{o1}}{\mathbf{v}_{id}} = \frac{\mathbf{v}_{o1}}{\frac{\mathbf{v}_{id}}{2}}$$

No current across wires connecting the two half-circuits \Rightarrow circuit is identical to:

Incremental analysis of differential amplifier Common-mode Analysis (contd.)

Common-mode voltage gain:

$$\mathbf{a}_{cm} = \frac{\mathbf{v}_{oc}}{\mathbf{v}_{ic}} = \frac{\frac{\mathbf{v}_{o2} + \mathbf{v}_{o1}}{2}}{\mathbf{v}_{ic}}$$

In common–mode, $v_{o1} = v_{o2}$, then:

$$\mathbf{a_{cm}} = \frac{\mathbf{v_{o1}}}{\mathbf{v_{ic}}}$$

3. Common-source differential amplifier (source-coupled pair)

Biasing Issues: must keep MOSFET's in saturation

• Upper limit to V₁₁ and V₁₂: MI and M2 driven into linear regime:

$$\mathbf{V}_{\mathbf{IC},\max} = \mathbf{V}_{\mathbf{O}1} + \mathbf{V}_{\mathbf{T}} = \mathbf{V}_{\mathbf{T}} + \mathbf{V}_{\mathbf{D}\mathbf{D}} - \mathbf{R}_{\mathbf{D}} \frac{\mathbf{I}_{\mathbf{BIAS}}}{2}$$

• Lower limit to V_{I1} and V_{I2} : set by circuit that implements I_{BIAS} .

Common-source differential amplifier Differential-mode half circuit

$$\mathbf{v}_{\mathbf{o}1} = -\mathbf{g}_{\mathbf{m}1}\mathbf{R}_{\mathbf{D}}\frac{\mathbf{v}_{\mathbf{i}\mathbf{d}}}{2}$$

Then the differential mode gain is

$$\mathbf{a}_{\mathbf{dm}} = \frac{\mathbf{v}_{\mathbf{o}1}}{\frac{\mathbf{v}_{\mathbf{i}\mathbf{d}}}{2}} = -\mathbf{g}_{\mathbf{m}1}\mathbf{R}_{\mathbf{D}}$$

Common-source differential amplifier Common-mode half circuit

Then the common-mode gain is

$$\mathbf{a}_{\mathbf{cm}} = \frac{\mathbf{v}_{\mathbf{o}1}}{\mathbf{v}_{\mathbf{i}\mathbf{c}}} = -\frac{\mathbf{g}_{\mathbf{m}1}\mathbf{R}_{\mathbf{D}}}{1 + 2\mathbf{g}_{\mathbf{m}1}\mathbf{r}_{\mathbf{o}\mathbf{b}}}$$

Common-mode Rejection Ratio (CMRR):

$$\mathbf{CMMR} = \frac{\mathbf{a}_{dm}}{\mathbf{a}_{cm}} = \frac{-\mathbf{g}_{m1}\mathbf{R}_{D}}{-\frac{\mathbf{g}_{m1}\mathbf{R}_{D}}{1+2\mathbf{g}_{m1}\mathbf{r}_{ob}}} = 1+2\mathbf{g}_{m1}\mathbf{r}_{ob}$$

To get good CMRR, need good current source.

Large-signal response of differential amplifier

Vss Examine large-signal transfer function:

• If
$$v_{I1} = v_{I2} \Rightarrow v_{O1} = v_{O2} \Rightarrow v_O = 0$$

- If $v_{I1} > v_{I2} \Rightarrow M1$ conducts more than $M2 \Rightarrow i_1 > i_2$ $\Rightarrow v_{O1} < v_{O2} \Rightarrow v_O < 0$
- If $v_{I1} \gg v_{I2} \Rightarrow M1$ conducts strongly, M2 turns off $\Rightarrow i_1 \approx I_{BIAS}, i_2 \approx 0 \Rightarrow$ $v_{O1} = v_{O1,min} = V_{DD} - I_{BAIS}R_D, \quad v_{O2} = v_{O1,max} = V_{DD}$ $v_{OD,min} = -I_{BAIS}R_D$
- Symmetric behavior for $v_{I1} < v_{I2}$ and $v_{I1} << v_{I2}$

Large-signal response of differential amplifier (contd.)

Saturating behavior for large differential input signals:

 v_{ID} that leads to amplifier saturation ($v_{I1} >> v_{I2}$):

$$\mathbf{v}_{\mathbf{ID},\mathbf{sat}} = \mathbf{v}_{\mathbf{GS}1} - \mathbf{v}_{\mathbf{GS}2}$$

With:

$$\mathbf{v}_{GS1} = \mathbf{V}_{T} + \sqrt{\frac{\mathbf{I}_{BAIS}}{\frac{\mathbf{W}}{2\mathbf{L}}\mu\mathbf{C}_{ox}}}$$
$$\mathbf{v}_{GS2} = \mathbf{V}_{T}$$

Then:

$$\mathbf{v}_{\mathbf{ID},sat} = \sqrt{\frac{\mathbf{I}_{BAIS}}{\frac{\mathbf{W}}{2\mathbf{L}}\boldsymbol{\mu}\mathbf{C}_{ox}}}$$

Large-signal response of differential amplifier (contd.)

- For small v_{ID} , v_O is *linear* in $v_I \Rightarrow$ differential amplifier
- For large v_{ID} , v_O saturates: once v_{ID} is large enough, v_O independent of $v_{ID} \Rightarrow$ logic inverter

Can do logic with this:

- Logic $0 = -V_{ID,sat}$, logic $1 = V_{ID,sat}$
- Regenerative if V_0 (swing) > $V_{ID,sat}$
- Used in some MOSFET logic styles
- Used with Si BJTs: *Emitter-Coupled Logic (ECL)*
- And GaAs FETs: *Source-Coupled FET Logic* (*SCFL*)

What did we learn today?

Summary of Key Concepts

- In differential amplifiers, signals are represented by *difference* between two voltages
- Differential amplifier amplifies the difference between two voltages but rejects "*common mode*" signals
 - \Rightarrow Improved noise immunity
- Using "*half-circuit*" technique, small-signal operation of differential amplifiers is analyzed by breaking the problem into two simpler ones
 - *Differential mode* problem
 - *Common mode* problem
- *Common-mode rejection ratio* (CMRR) is an important figure of merit for differential amplifiers
- Differential amplifiers require good device matching

Wrap-up of 6.012

6.012: Introductory subject to *microelectronic* devices and circuits

- MICROELECTRONIC DEVICES
 - Semiconductor physics: electrons / holes and drift / diffusion
 - Metal-oxide-semiconductor field-effect transistors (MOSFETs): drift of carriers in inversion layer
 - Bipolar junction transistors (BJTs): minority carrier diffusion
- MICROELECTRONIC CIRCUITS
 - Digital circuits (mainly CMOS): no static power
 dissipation; power ↓, delay ↓ & density ↑ as W & L ↓
 - Analog circuits (BJT and CMOS): $f_{\tau} \uparrow and g_{m} \uparrow as L \downarrow$: however, $A_{vomax} \downarrow as L \downarrow$

Follow-on Courses

- 6.152J Microelectronics Processing Technology
- **6.720J** Integrated Microelectronic Devices
- 6.301 Solid State Circuits
- 6.371 Introduction to VLSI Systems
- 6.374 Analysis and Design of Digital ICs
- 6.775 Design of Analog MOS LSI