Lecture 5 - PN Junction and MOS Electrostatics (II)

PN JUNCTION IN THERMAL EQUILIBRIUM

February 22, 2000

Contents:

- 1. Introduction to pn junction
- 2. Electrostatics of pn junction in thermal equilibrium
- 3. The depletion approximation
- 4. Contact potentials

Reading assignment:

Howe and Sodini, Ch. 3, $\S\S3.3-3.6$

Key questions

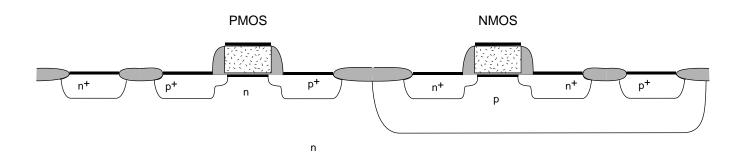
- What happens if the doping distribution in a semiconductor abruptly changes from n-type to p-type?
- Is there a simple description of the electrostatics of a pn junction?

1. Introduction to pn junction

- pn junction: p-region and n-region in intimate contact
- Why is the p-n junction worth studying?

It is present in virtually every semiconductor device!

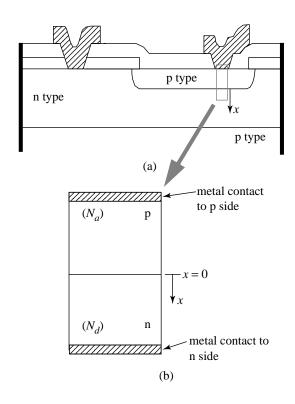
Example: CMOS cross section



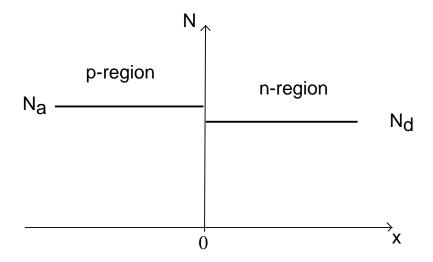
Understanding p-n junction is essential to understanding transistor operation.

2. Electrostatics of p-n junction in equilibrium

Focus on intrinsic region:

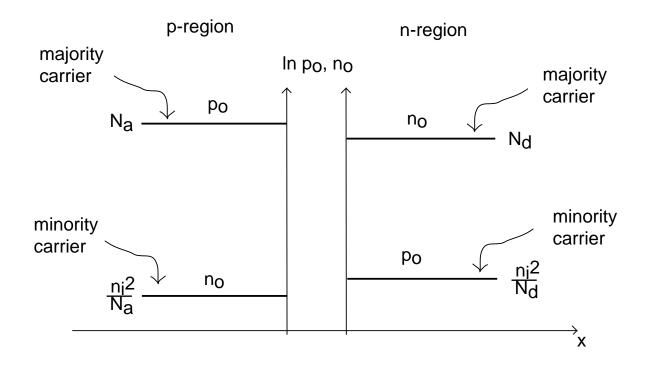


Doping distribution of <u>abrupt p-n junction</u>:



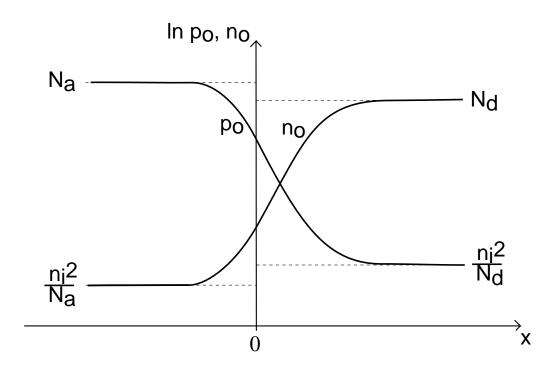
What is the carrier concentration distribution in thermal equilibrium?

First think of two sides separately:

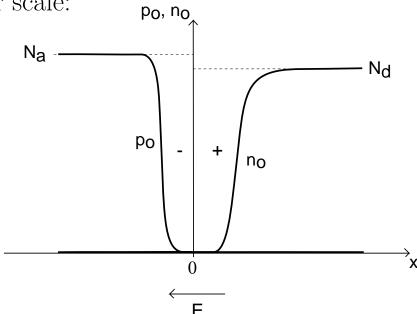


Now bring them together. What happens?

Diffusion of electrons and holes from majority carrier side to minority carrier side until drift balances diffusion. Resulting carrier profile in thermal equilibrium:



- Far away from metallurgical junction: nothing happens
 - two quasi-neutral regions
- Around metallurgical junction: carrier diffusion must cancel drift
 - space-charge region



Thermal equilibrium: balance between drift and diffusion

$$\begin{matrix} \xrightarrow{J_{h}^{diff}} \\ \xrightarrow{J_{e}^{diff}} \\ \xrightarrow{J_{e}^{drift}} \end{matrix}$$

Can divide semiconductor in three regions:

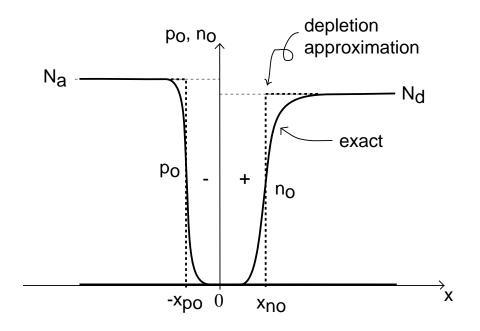
- two quasi-neutral n- and p-regions (QNR's)
- one space charge region (SCR)

Now, want to know $n_o(x)$, $p_o(x)$, $\rho(x)$, E(x), and $\phi(x)$.

Solve electrostatics using simple, powerful approximation.

3. The depletion approximation

- Assume QNR's perfectly charge neutral
- assume SCR depleted of carriers (depletion region)
- transition between SCR and QNR's sharp (must calculate where to place $-x_{po}$ and x_{no})



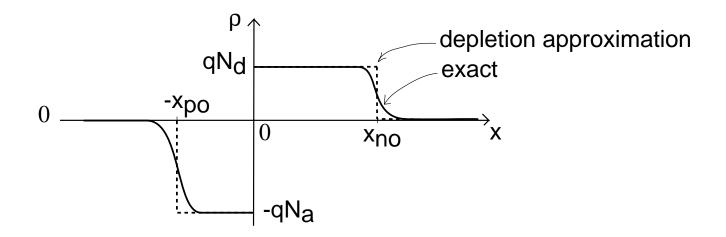
•
$$x < -x_{po}$$
 $p_o(x) = N_a, \ n_o(x) = \frac{n_i^2}{N_a}$

$$-x_{po} < x < 0 \quad p_o(x), \ n_o(x) \ll N_a$$

•
$$0 < x < x_{no}$$
 $n_o(x), p_o(x) \ll N_d$

•
$$x_{no} < x$$
 $n_o(x) = N_d, \ p_o(x) = \frac{n_i^2}{N_d}$

• Space charge density

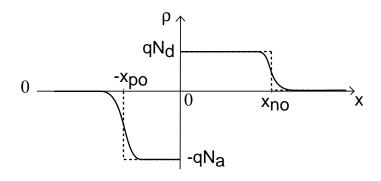


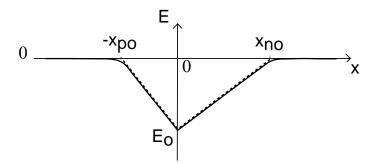
$$\rho(x) = 0 \qquad x < -x_{po}
= -qN_a \qquad -x_{po} < x < 0
= qN_d \qquad 0 < x < x_{no}
= 0 \qquad x_{no} < x$$

• Electric field

Integrate Gauss' equation:

$$E(x_1) - E(x_2) = \frac{1}{\epsilon} \int_{x_1}^{x_2} \rho(x) dx$$





$$\bullet \ x < -x_{po} \qquad E(x) = 0$$

•
$$-x_{po} < x < 0$$
 $E(x) - E(-x_{po}) = \frac{1}{\epsilon} \int_{-x_{po}}^{x} -qN_{a}dx$
= $\frac{-qN_{a}}{\epsilon}x|_{-x_{po}}^{x} = \frac{-qN_{a}}{\epsilon}(x + x_{po})$

•
$$0 < x < x_{no}$$
 $E(x) = \frac{qN_d}{\epsilon}(x - x_{no})$

$$\bullet x_{no} < x$$
 $E(x) = 0$

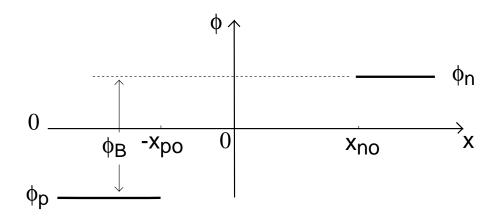
• ELECTROSTATIC POTENTIAL (with $\phi = 0$ @ $n_o = p_o = n_i$):

$$\phi = \frac{kT}{q} \ln \frac{n_o}{n_i} \qquad \phi = -\frac{kT}{q} \ln \frac{p_o}{n_i}$$

In QNR's, n_o , p_o known \Rightarrow can determine ϕ :

in p-QNR:
$$p_o = N_a \implies \phi_p = -\frac{kT}{q} \ln \frac{N_a}{n_i}$$

in n-QNR:
$$n_o = N_d \implies \phi_n = \frac{kT}{q} \ln \frac{N_d}{n_i}$$



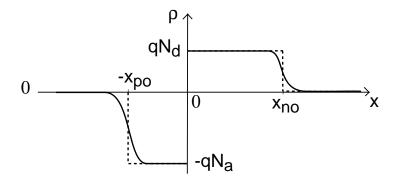
Built-in potential:

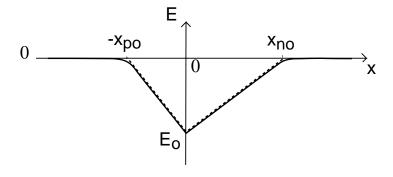
$$\phi_B = \phi_n - \phi_p = \frac{kT}{q} \ln \frac{N_a N_d}{n_i^2}$$

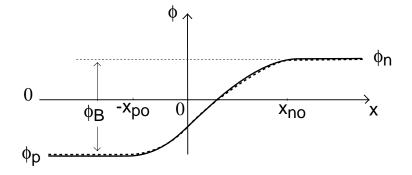
General expression: did not use depletion approximation.

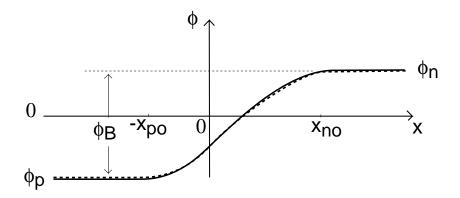
To get $\phi(x)$ in between, integrate E(x):

$$\phi(x_1) - \phi(x_2) = -\int_{x_1}^{x_2} E(x) dx$$









•
$$x < -x_{po}$$
 $\phi(x) = \phi_p$
• $-x_{po} < x < 0$ $\phi(x) - \phi(-x_p)$

$$= -\int_{-x_{po}}^{x} -\frac{qN_a}{\epsilon}(x + x_{po})dx$$

$$= \frac{qN_a}{2\epsilon}(x + x_{po})^2$$
• $0 < x < x_{no}$ $\phi(x) = \phi_n - \frac{qN_a}{2\epsilon}(x - x_{no})^2$
• $x_{no} < x$ $\phi(x) = \phi_n$

Almost done...

Still don't know x_{no} and $x_{po} \Rightarrow$ need two more equations

1. Require overall charge neutrality:

$$qN_a x_{po} = qN_d x_{no}$$

2. Require $\phi(x)$ continuous at x=0:

$$\phi_p + \frac{qN_a}{2\epsilon}x_{po}^2 = \phi_n - \frac{qN_d}{2\epsilon}x_{no}^2$$

Two equations with two unknowns. Solution:

$$x_{no} = \sqrt{\frac{2\epsilon\phi_B N_a}{q(N_a + N_d)N_d}} \qquad x_{po} = \sqrt{\frac{2\epsilon\phi_B N_d}{q(N_a + N_d)N_a}}$$

Now problem completely solved.

Other results:

Total width of space charge region:

$$x_{do} = x_{no} + x_{po} = \sqrt{\frac{2\epsilon\phi_B(N_a + N_d)}{qN_aN_d}}$$

Field at metallurgical junction:

$$|E_o| = \sqrt{\frac{2q\phi_B N_a N_d}{\epsilon (N_a + N_d)}}$$

Three cases:

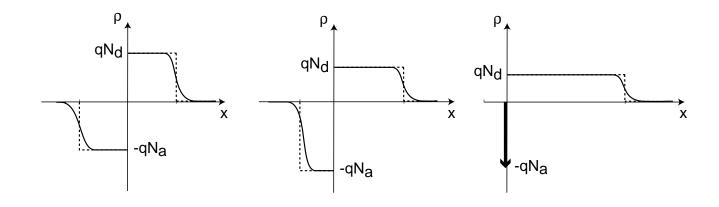
- Symmetric junction: $N_a = N_d \implies x_{po} = x_{no}$
- Asymmetric junction: $N_a > N_d \implies x_{po} < x_{no}$
- Strongly asymmetric junction:

i.e. p⁺n junction:
$$N_a \gg N_d$$

$$x_{po} \ll x_{no} \simeq x_{do} \simeq \sqrt{\frac{2\epsilon\phi_B}{qN_d}} \propto \frac{1}{\sqrt{N_d}}$$

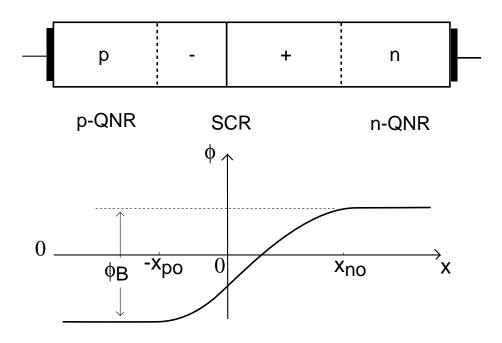
$$|E_o| \simeq \sqrt{\frac{2q\phi_B N_d}{\epsilon}} \propto \sqrt{N_d}$$

The lowly-doped side controls the electrostatics of the pn junction.



4. Contact potentials

Potential distribution in thermal equilibrium so far:



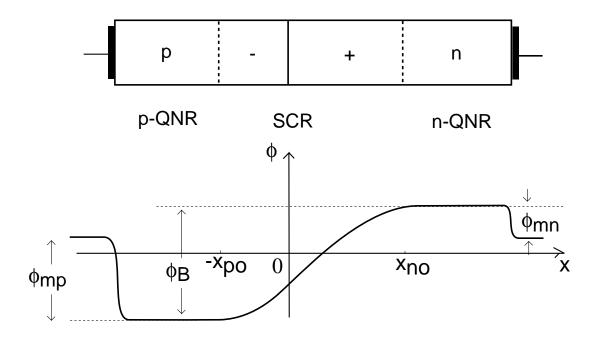
Question 1: If I apply a voltmeter across diode, do I measure ϕ_B ?

 \square yes \square no \square it depends

Question 2: If I short diode terminals, does current flow on outside circuit?

□ yes □ no □ sometimes

We are missing *contact potential* at metal-semiconductor contacts:



Metal-semiconductor contacts: junctions of dissimilar materials

 \Rightarrow built-in potentials: ϕ_{mn} , ϕ_{mp}

Potential difference across structure must be zero \Rightarrow cannot measure ϕ_B !

$$\phi_B = \phi_{mn} + \phi_{mp}$$

Key conclusions

- Electrostatics of pn junction in equilibrium:
 - a space-charge region
 - surrounded by two quasi-neutral regions
 - ⇒ built-in potential across p-n junction
- To first order, carrier concentrations in space-charge region are much smaller than doping level
 - \Rightarrow depletion approximation.
- Contact potential at metal-semiconuctor junctions:
 - ⇒ from contact to contact, there is no potential buildup across pn junction