Lecture 11 - MOSFET (III)

MOSFET Equivalent Circuit Models

March 15, 2001

Contents:

- 1. Low-frequency small-signal equivalent circuit model
- 2. High-frequency small-signal equivalent circuit model

Reading assignment:

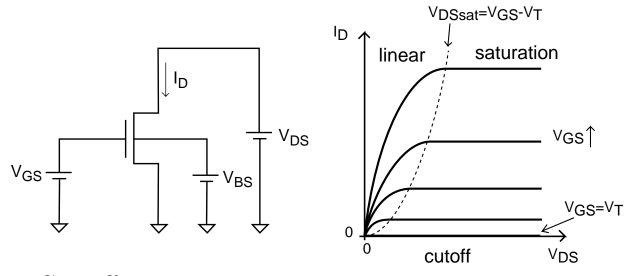
Howe and Sodini, Ch. 4, §4.5-4.6

Key questions

- What is the topology of a small-signal equivalent circuit model of the MOSFET?
- What are the key dependencies of the leading model elements in saturation?

1. Low-frequency small-signal equivalent circuit model

Regimes of operation of MOSFET:



• Cut-off:

$$I_D = 0$$

• Linear:

$$I_D = \frac{W}{L} \mu_n C_{ox} (V_{GS} - \frac{V_{DS}}{2} - V_T) V_{DS}$$

• Saturation:

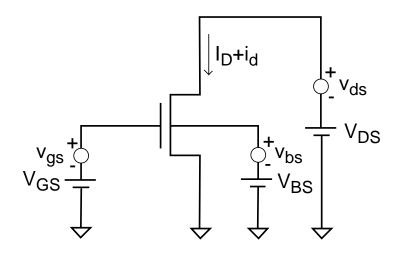
$$I_{D} = I_{Dsat} = \frac{W}{2L} \mu_{n} C_{ox} (V_{GS} - V_{T})^{2} [1 + \lambda (V_{DS} - V_{DSsat})]$$

Effect of back bias:

$$V_T(V_{BS}) = V_{To} + \gamma(\sqrt{-2\phi_p - V_{BS}} - \sqrt{-2\phi_p})$$

Small-signal device modeling

In many applications, interested in response of device to a *small-signal* applied on top of bias:



Key points:

- small-signal is small \Rightarrow response of non-linear components becomes linear
- since response is linear, superposition can be used \Rightarrow effects of different small signals are independent from each other

Mathematically:

$$i_D(V_{GS}, V_{DS}, V_{BS}; v_{gs}, v_{ds}, v_{bs}) \simeq$$

$$I_D(V_{GS}, V_{DS}, V_{BS}) + i_d(v_{gs}, v_{ds}, v_{bs})$$

with i_d linear on small-signal drives:

$$i_d \simeq g_m v_{gs} + g_o v_{ds} + g_{mb} v_{bs}$$

Define:

 $g_m \equiv transconductance [S]$ $g_o \equiv output \text{ or } drain \text{ } conductance [S]$ $g_{mb} \equiv backgate \text{ } transconductance [S]$

Approach to computing g_m , g_o , and g_{mb} :

$$g_m \simeq \frac{\partial I_D}{\partial V_{GS}}|_Q$$

$$g_o \simeq \frac{\partial I_D}{\partial V_{DS}}|_Q$$

$$g_{mb} \simeq \frac{\partial I_D}{\partial V_{BS}}|_Q$$

 $Q \equiv bias\ point\ (V_{GS}, V_{DS}, V_{BS})$

\square Transconductance

In saturation regime:

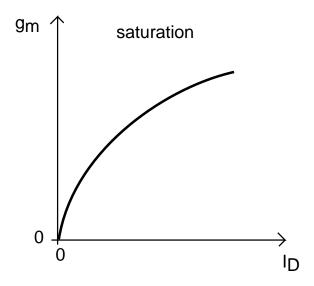
$$I_D = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2 [1 + \lambda (V_{DS} - V_{DSsat})]$$

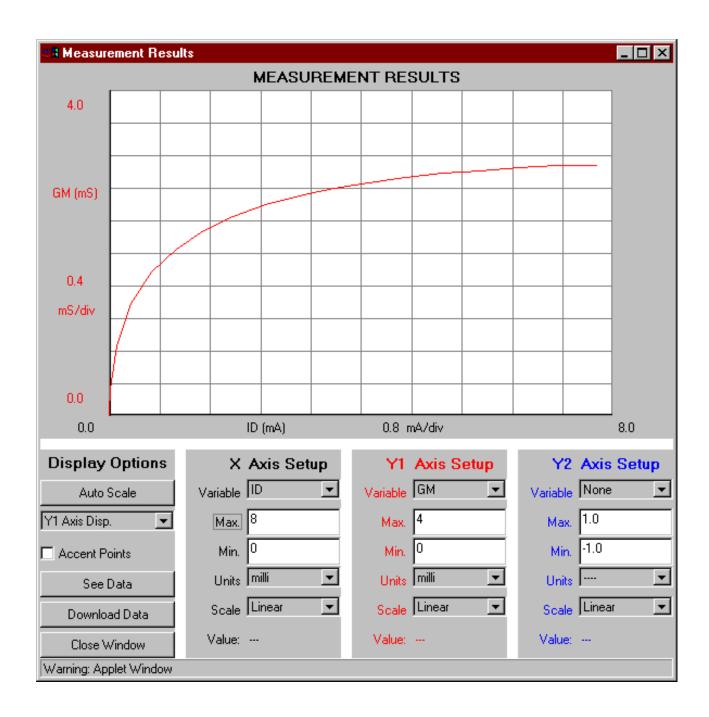
Then (neglecting channel length modulation):

$$g_m = \frac{\partial I_D}{\partial V_{GS}}|_Q \simeq \frac{W}{L} \mu_n C_{ox} (V_{GS} - V_T)$$

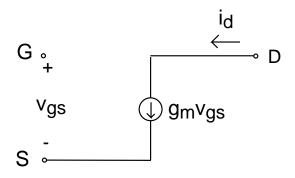
Rewrite in terms of I_D :

$$g_m = \sqrt{2\frac{W}{L}\mu_n C_{ox} I_D}$$





Equivalent circuit model representation of g_m :



В。

□ Output conductance

In saturation regime:

$$I_D = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2 [1 + \lambda (V_{DS} - V_{DSsat})]$$

Then:

$$g_o = \frac{\partial I_D}{\partial V_{DS}}|_Q = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2 \lambda \simeq \lambda I_D$$

Output resistance is inverse of output conductance:

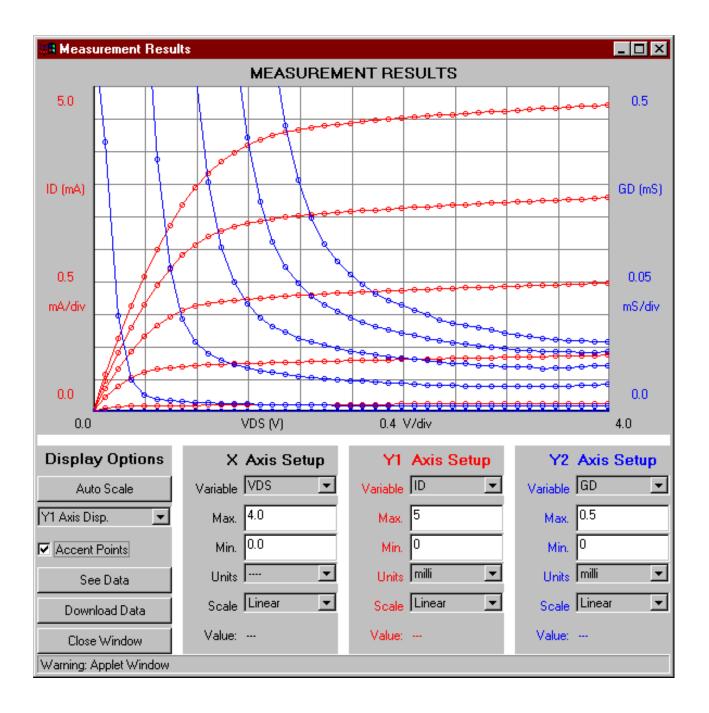
$$r_o = \frac{1}{g_o} = \frac{1}{\lambda I_D}$$

Remember also:

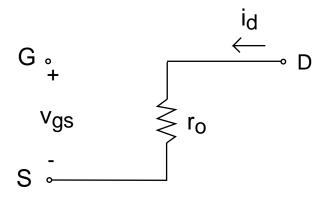
$$\lambda \propto \frac{1}{L}$$

Hence:

$$r_o \propto L$$



Equivalent circuit model representation of g_o :



В。

□ Backgate transconductance

In saturation regime (neglect channel length modulation):

$$I_D \simeq \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2$$

Then:

$$g_{mb} = \frac{\partial I_D}{\partial V_{BS}}|_Q = \frac{W}{L} \mu_n C_{ox} (V_{GS} - V_T) (-\frac{\partial V_T}{\partial V_{BS}}|_Q)$$

Since:

$$V_T(V_{BS}) = V_{To} + \gamma(\sqrt{-2\phi_p - V_{BS}} - \sqrt{-2\phi_p})$$

Then:

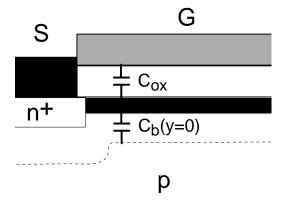
$$\frac{\partial V_T}{\partial V_{BS}}\big|_Q = \frac{-\gamma}{2\sqrt{-2\phi_p - V_{BS}}}$$

All together:

$$g_{mb} = \frac{\gamma g_m}{2\sqrt{-2\phi_p - V_{BS}}}$$

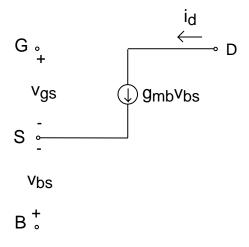
Another way to write this (see book):

$$\frac{g_{mb}}{g_m} = \frac{C_b(y=0)}{C_{ox}}$$

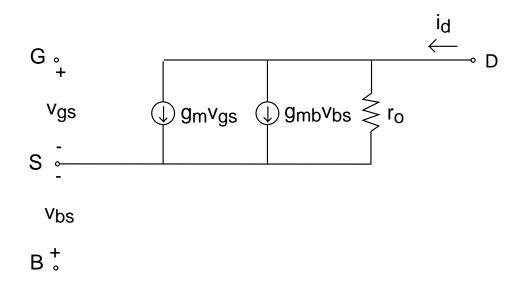


Handy rule: ratio of back transconductance to transconductance is equal to ratio of depletion capacitance at source to oxide capacitance.

Equivalent circuit model representation of g_{mb} :



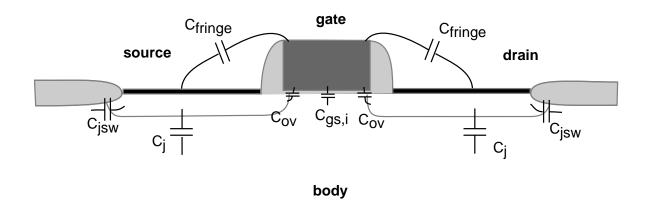
Complete MOSFET small-signal equivalent circuit model for low frequency:



2. High-frequency small-signal equivalent circuit model

Need to add capacitances.

In saturation:



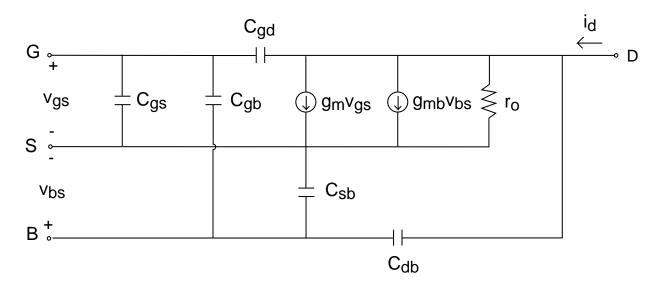
 $C_{gs} \equiv \text{channel charge} + \text{overlap capacitance}, C_{ov}$ $C_{gd} \equiv \text{overlap capacitance}, C_{ov}$

 $C_{gb} \equiv \text{only parasitic capacitance}$

 $C_{sb} \equiv \text{source junction depletion capacitance}$ (+sidewall)

 $C_{db} \equiv \text{drain junction depletion capacitance}$ (+sidewall)

Complete MOSFET high-frequency small-signal equivalent circuit model:



Plan for development of capacitance model:

- Start with $C_{gs,i}$
 - compute gate charge $Q_G = Q_N + Q_B$
 - compute how Q_G changes with V_{GS}
- Add pn junction capacitances

Inversion layer charge in saturation

$$Q_N(V_{GS}) = W \int_0^L Q_n(y) dy = W \int_0^{V_{GS}-V_T} Q_n(V_c) \frac{dy}{dV_c} dV_c$$

But:

$$\frac{dV_c}{dy} = -\frac{I_D}{W\mu_n Q_n(V_c)}$$

Then:

$$Q_N(V_{GS}) = -\frac{W^2 L \mu_n}{I_D} \int_0^{V_{GS} - V_T} Q_n^2(V_c) dV_c$$

Remember:

$$Q_n(V) = -C_{ox}(V_{GS} - V_c - V_T)$$

Then:

$$Q_N(V_{GS}) = -\frac{W^2 L \mu_n C_{ox}^2}{I_D} \int_0^{V_{GS} - V_T} (V_{GS} - V_c - V_T)^2 dV_c$$

Do integral, substitute I_D in saturation and get:

$$Q_N(V_{GS}) = -\frac{2}{3}WLC_{ox}(V_{GS} - V_T)$$

Gate charge:

$$Q_G(V_{GS}) = -Q_N(V_{GS}) - Q_{B,max}$$

Intrinsic gate-to-source capacitance:

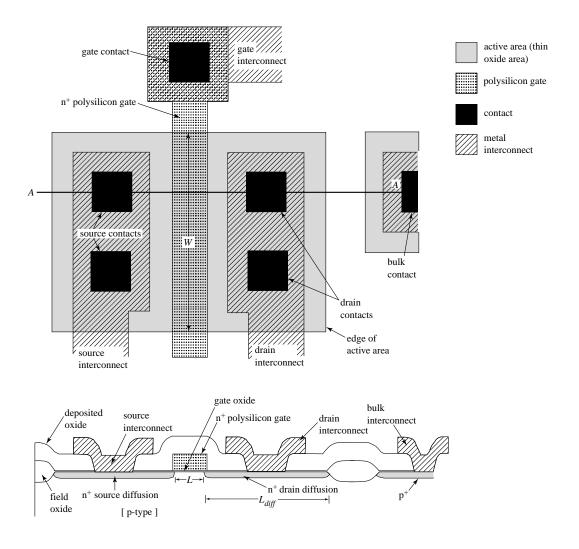
$$C_{gs,i} = \frac{dQ_G}{dV_{GS}} = \frac{2}{3}WLC_{ox}$$

Must add overlap capacitance:

$$C_{gs} = \frac{2}{3}WLC_{ox} + WC_{ov}$$

Gate-to-drain capacitance - only overlap capacitance:

$$C_{gd} = WC_{ov}$$



Body-to-source capacitance = source junction capacitance:

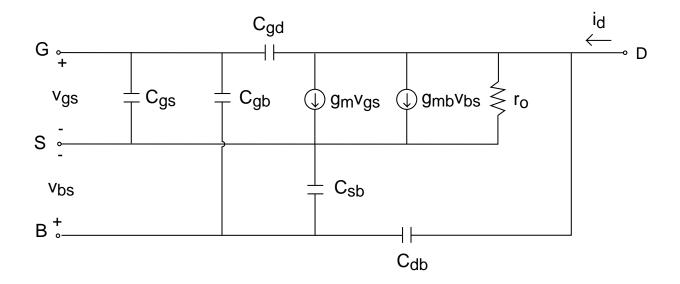
$$C_{bs} = C_j + C_{jsw} = WL_{diff} \sqrt{\frac{q\epsilon_s N_a}{2(\phi_B - V_{BS})}} + (2L_{diff} + W)C_{JSW}$$

Body-to-drain capacitance = drain junction capacitance:

$$C_{bd} = C_j + C_{jsw} = WL_{diff} \sqrt{\frac{q\epsilon_s N_a}{2(\phi_B - V_{BD})}} + (2L_{diff} + W)C_{JSW}$$

Key conclusions

High-frequency small-signal equivalent circuit model of MOSFET:



In saturation:

$$g_m \propto \sqrt{\frac{W}{L}I_D}$$

$$r_o \propto rac{L}{I_D}$$

$$C_{qs} \propto WLC_{ox}$$