Lecture 21 - Multistage Amplifiers (I)

Multistage Amplifiers

May 1, 2001

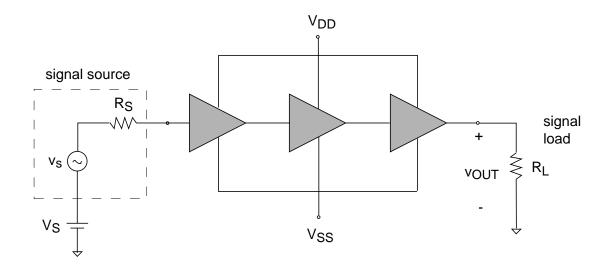
Contents:

- 1. Introduction
- 2. CMOS multistage voltage amplifier
- 3. BiCMOS multistage voltage amplifier
- 4. BiCMOS current buffer
- 5. Coupling amplifier stages

Reading assignment:

Howe and Sodini, Ch. 9, $\S\S9.1-9.3$

Key questions


- How can one build a wide range of high-performance amplifiers using the single-transistor stages studied so far?
- What are the most important considerations when assembling mulstistage amplifiers:
 - regarding interstage loading?
 - regarding interstage biasing?

1. Introduction

Amplifier requirements are often demanding:

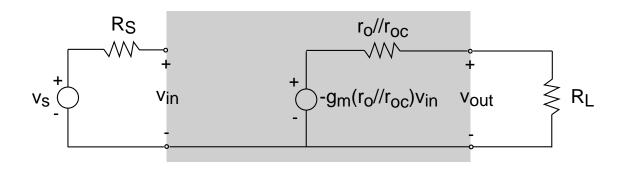
- must adapt to specific kinds of signal source and load,
- must deliver sufficient gain

Single-transistor amplifier stages are very limited in what they can accomplish \Rightarrow multistage amplifier.

Issues:

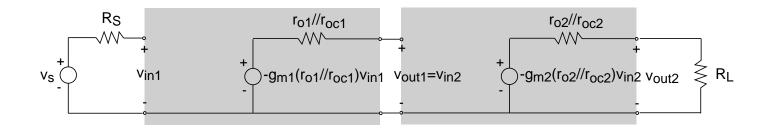
- What amplifying stages should be used and in what order?
- What devices should be used, BJT or MOSFET?
- How is biasing to be done?

□ Summary of single stage characteristics:

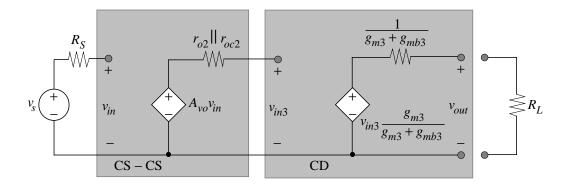

stage	A_{vo}, G_{mo}, A_{io}	R_{in}	R_{out}	key function
common source	$G_{mo} = g_m$	∞	$r_o//r_{oc}$	transconductance amp.
common drain	$A_{vo} \simeq \frac{g_m}{g_m + g_{mb}}$	∞	$rac{1}{g_m+g_{mb}}$	voltage buffer
common gate	$A_{io} \simeq -1$	$\frac{1}{g_m + g_{mb}}$	$r_{oc}//[r_o(1+g_mR_S)]$	current buffer
common emitter	$G_{mo} \simeq g_m$	r_{π}	$r_o//r_{oc}$	transconductance amp.
common collector	$A_{vo} \simeq 1$	$r_{\pi} + \beta(r_o//r_{oc}//R_L)$	$\frac{1}{g_m} + \frac{R_S}{\beta}$	voltage buffer
common base	$A_{io} \simeq -1$	$\frac{1}{g_m}$	$r_{oc}//\{r_o[1+g_m(r_{\pi}//R_S)]\}$	current buffer

 \square Key differences between BJT's and MOSFETs:

BJT		MOSFET
$I_B = \frac{I_C}{\beta}$	>>	$I_G = 0$
$g_m = \frac{qI_C}{kT}$	>	$g_m = \sqrt{2\frac{W}{L}\mu C_{ox}I_D}$
$r_o = rac{V_A}{I_C}$	>	$r_o = \frac{1}{\lambda I_D}$


2. CMOS multistage voltage amplifier

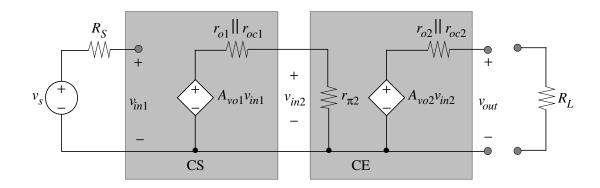
- \square Goals:
 - high voltage gain
 - high R_{in}
 - low R_{out}
- □ Good starting point: CS stage


- $R_{in} = \infty$
- $A_{vo} = -g_m(r_o//r_{oc})$, probably insufficient
- $R_{out} = r_o / / r_{oc}$, too high

□ Add second CS stage to get more gain:

- $R_{in} = \infty$
- $A_{vo} = g_{m1}(r_{o1}//r_{oc1})g_{m2}(r_{o2}//r_{oc2})$
- but $R_{out} = r_{o2}//r_{oc2}$, still high

□ Add CD stage at output:


- $R_{in} = \infty$
- $A_{vo} = g_{m1}(r_{o1}//r_{oc1})g_{m2}(r_{o2}//r_{oc2})\frac{g_{m3}}{g_{m3}+g_{mb3}}$, still high
- $R_{out} = \frac{1}{g_{m3} + g_{mb3}}$, now small

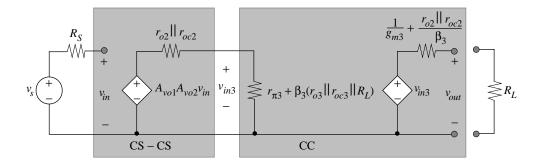
3. BiCMOS multistage voltage amplifier

 $\square A_{vo}(CE) > A_{vo}(CS)$ because $r_o(BJT) > r_o(MOSFET)$ and $g_m(BJT) > g_m(MOSFET)$ but...

CS stage is best first stage, since $R_{in} = \infty$.

□ Add CE stage following CS stage?

Trouble is interstage loading degrades gain:


$$R_{out1} = r_{o1} / / r_{oc1} \gg R_{in2} = r_{\pi 2}$$

Voltage divider between stages:

$$\frac{R_{in2}}{R_{out1} + R_{in2}} \simeq \frac{R_{in2}}{R_{out1}} \simeq \frac{r_{\pi 2}}{r_{o1}//r_{oc1}} \ll 1$$

Additional gain provided by CE stage more than lost in interstage loading.

□ Use two CS stages, but add CC stage at output:

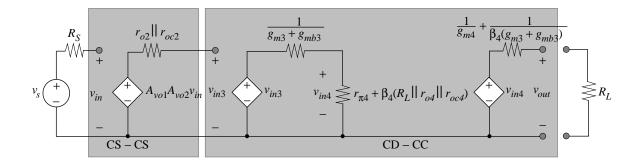
Interstage loading:

$$R_{out2} = r_{o2}//r_{oc2}, \quad R_{in3} = r_{\pi 3} + \beta_3(r_{o3}//r_{oc3}//R_L)$$

Then, interstage loss:

$$\frac{R_{in3}}{R_{out2} + R_{in3}} = \frac{r_{\pi 3} + \beta_3(r_{o3}//r_{oc3}//R_L)}{r_{o2}//r_{oc2} + r_{\pi 3} + \beta_3(r_{o3}//r_{oc3}//R_L)}$$

better than trying to use a CE stage, but still pretty bad.


Benefit is that R_{out} has improved:

$$R_{out} = R_{out3} = \frac{1}{g_{m3}} + \frac{R_{out2}}{\beta_3} = \frac{1}{g_{m3}} + \frac{r_{o2}//r_{oc2}}{\beta_3}$$

Since, in general, $g_m(BJT) > g_m(MOSFET)$, R_{out} could be better than CD output stage if $r_{o2}//r_{oc2}$ is not too large. Otherwise, CD stage output is better.

□ Better voltage buffer: cascade CC and CD output stages.

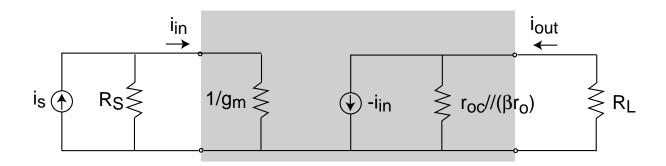
What is best order? Since $R_{in}(CD) = \infty$, best to place CD first:

Interstage loading:

$$\frac{R_{in3}}{R_{out2} + R_{in3}} = 1$$

$$\frac{R_{in4}}{R_{out3} + R_{in4}} = \frac{r_{\pi 4} + \beta_4(r_{o4}//r_{oc4}//R_L)}{\frac{1}{g_{m3} + g_{mb3}} + r_{\pi 4} + \beta_4(r_{o4}//r_{oc4}//R_L)} \simeq 1$$

and excellent output resistance:

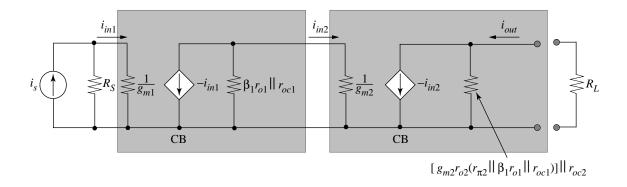

$$R_{out} = R_{out4} = \frac{1}{g_{m4}} + \frac{R_{out3}}{\beta_4} = \frac{1}{g_{m4}} + \frac{1}{\beta_4(g_{m3} + g_{mb3})}$$

4. BiCMOS current buffer

\square Goals:

- Unity current gain
- very low R_{in}
- very high R_{out}

Start with common-base stage:



- $A_{io} = -1$
- $R_{in} = \frac{1}{g_m}$
- $R_{out} = r_{oc} / \{r_o[1 + g_m(r_{\pi} / /R_S)]\}$

Note that if R_S is not too low, $R_{out} \simeq r_{oc}//(\beta r_o)$.

Can we further increase R_{out} by adding a second CB stage?

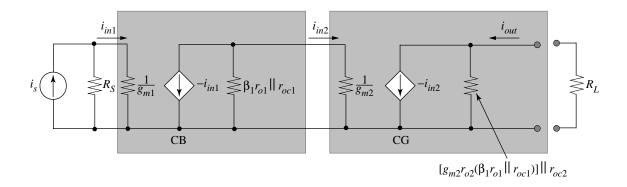
□ CB-CB current buffer:

Now

$$R_{out} = R_{out2} = r_{oc2} / \{r_{o2}[1 + g_{m2}(r_{\pi 2} / / R_{out1})]\}$$

Plugging in $R_{out1} \simeq r_{oc1}//(\beta_1 r_{o1})$,

$$R_{out} = r_{oc2} / \{ r_{o2} [1 + g_{m2}(r_{\pi 2} / / r_{oc1} / / \beta_1 r_{o1})] \}$$


But, since $r_{\pi 2} \ll r_{oc1}//(\beta_1 r_{o1})$, then

$$R_{out} \simeq r_{oc2} / / [r_{o2}(1 + g_{m2}r_{\pi 2})] \simeq r_{oc2} / / (\beta_2 r_{o2})$$

Did not improve anything! The base current limits the number of CB stages that improve R_{out} to just one.

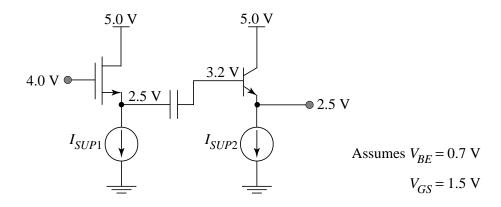
Since CG stage has no gate current, cascade it behind CB stage.

□ CB-CG current buffer:

$$R_{out} = R_{out2} = r_{oc2} / / [r_{o2}(1 + g_{m2}R_{out1})]$$

with $R_{out1} \simeq r_{oc1}//(\beta_1 r_{o1})$,

$$R_{out} = r_{oc2} / / [r_{o2}g_{m2}(r_{oc1} / / \beta_1 r_{o1})]$$


Now R_{out} has improved by about $g_{m2}r_{o2}$, but only to the extent that r_{oc2} is high enough...

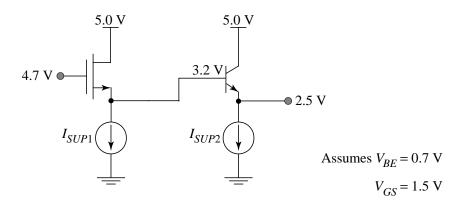
5. Coupling amplifier stages

□ CAPACITIVE COUPLING

Capacitors of large enough value behave as AC short, so signal goes through but bias is independent for each stage.

Example, CD-CC voltage buffer:

• Advantages:

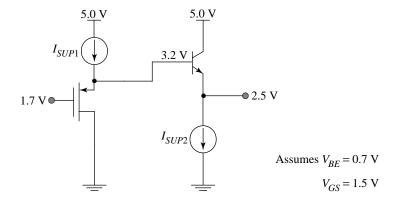

- can select bias point for optimum operation
- can select bias point close to middle of rails for maximum signal swing

• Disadvantages:

- to approximate AC short, need large capacitors that consume significant area

□ Direct coupling: share bias points across stages.

Example, CD-CC voltage buffer:


• Advantages:

no capacitors: compact

• Disadvantages:

- bias point shared: constrains design
- bias shifts from stage to stage and can stray too far from center of range

Solution: use PMOS CD stage:

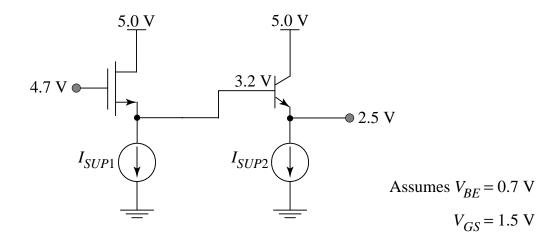
Trade-off: $g_m(PMOS) < g_m(NMOS) \rightarrow lower gain$

\Box Summary of DC shifts through amplifier stages:

Amplifier	Transistor Type					
Type	NMOS	PMOS	npn	pnp		
Common Source/ Common Emitter (CS/CE)	i_{SUP} V^+ OUT V^-	$i_{SUP} \bigvee_{V^{-}}^{V^{+}}$	i_{SUP} V^+ OUT V^-	V^{+} i_{SUP} V^{-}		
Common Gate/ Common Base (CG/CB)	i _{SUP} OUT OUT IN V-	$i_{SUP} \bigvee_{V^-}^{V^+}$	i_{SUP} V^+ OUT IN V^-	$i_{SUP} \bigvee_{V^-}^{V^+}$		
Common Drain/ Common Collector (CD/CC)	i_{SUP} V^+ V^-	i_{SUP} V^+ OUT V^-	i_{SUP} V^+ OUT V^-	i_{SUP} V^+ OUT V^-		

Important difference in bias shift between stages in BJT and MOSFET amps:

• In BJT (for npn):


$$V_{BE} \simeq V_{BE,on}$$

rather independent of transistor size and current level.

• In MOSFET (for nMOSFET):

$$V_{GS} = V_T + \sqrt{\frac{2I_D}{\mu_n C_{ox}} \frac{L}{W}}$$

Can be engineered through bias current and transistor geometry.

Key conclusions

- To achieve amplifier design goals, several stages often needed.
- In multistage amplifiers, different stages used to accomplish different goals:
 - voltage gain: common-source, common emitter
 - voltage buffer: common-drain, common collector
 - current buffer: common-gate, common base
- In multistage amplifiers must pay attention to interstage loading to avoid unnecessary losses.
- In *direct-coupled* amplifiers, bias is shared between adjoining stages:
 - must select compromise bias,
 - must pay attention to bias shift from stage to stage.