Lecture 24 - Frequency Response of Amplifiers (II)

OTHER AMPLIFIER STAGES

May 10, 2001

Contents:

- 1. Frequency response of common-drain amplifier
- 2. Frequency response of common-gate amplifier

Reading assignment:

Howe and Sodini, Ch. 10, §§10.5-10.6

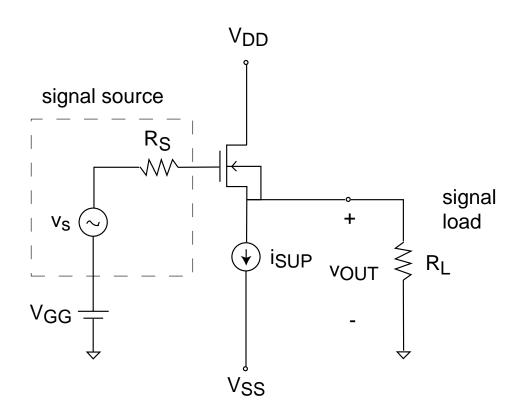
Announcement:

Final exam: May 24, 9 AM-12 noon, Walker; open book, calculator required; entire subject under examination but emphasis on lectures #18-26.

Key questions

- Do all amplifier stages suffer from the Miller effect?
- Is there something unique about the common-gate and common drain stages in terms of frequency response?

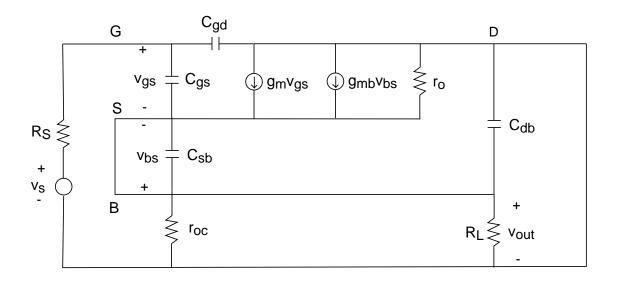
1. Frequency response of common-drain amplifier

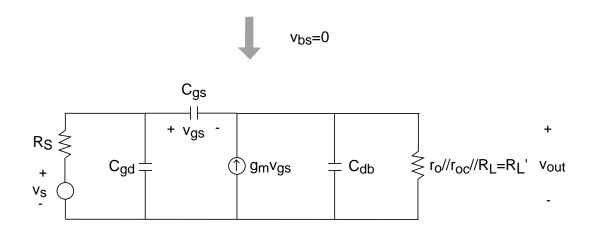


Features:

- voltage gain $\simeq 1$
- high input resistance
- low output resistance
- $\bullet \Rightarrow$ good voltage buffer

High-frequency small-signal model:





$$A_{v,LF} = \frac{g_m R_L'}{1 + g_m R_L'} \le 1$$

Compute bandwidth by open-circuit time constant technique:

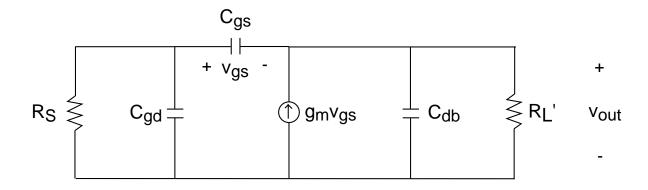
- 1. shut-off all independent sources,
- 2. compute Thevenin resistance R_{Ti} seen by each C_i with all other C's open,
- 3. compute open-circuit time constant for C_i as

$$\tau_i = R_{Ti}C_i$$

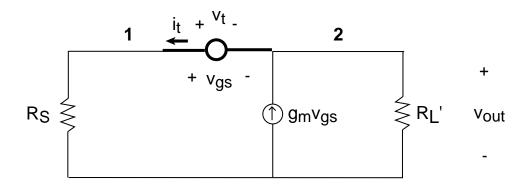
4. conservative estimate of bandwidth:

$$\omega_H \simeq \frac{1}{\Sigma \tau_i}$$

 \square First, short v_s :



\square Time constant associated with C_{gs} :



node 1:

$$i_t - \frac{v_t + v_{out}}{R_S} = 0$$

node 2:

$$g_m v_{gs} - i_t - \frac{v_{out}}{R_L'} = 0$$

also

$$v_{gs} = v_t$$

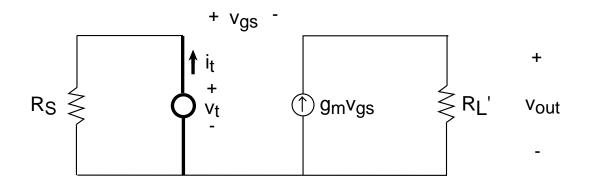
Solve for v_{out} in **1** and plug into **2**:

$$R_{Tgs} = \frac{v_t}{i_t} = \frac{R_S + R_L'}{1 + g_m R_L'}$$

Time constant:

$$\tau_{gs} = C_{gs} \frac{R_S + R_L'}{1 + g_m R_L'}$$

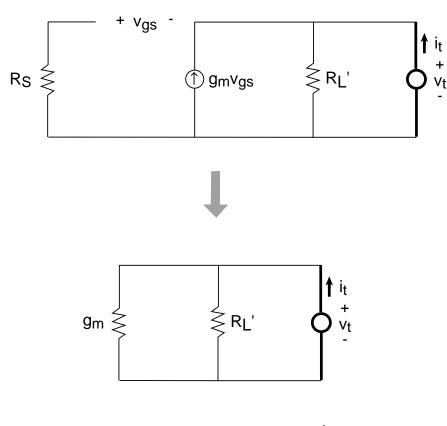
 \square Time constant associated with C_{gd} :



$$R_{Tgd} = R_S$$

$$\tau_{gd} = C_{gd}R_S$$

\square Time constant associated with C_{db} :



$$R_{Tdb} = \frac{1}{g_m} / / R_L' = \frac{R_L'}{1 + g_m R_L'}$$

$$\tau_{db} = C_{db} \frac{R_L'}{1 + g_m R_L'}$$

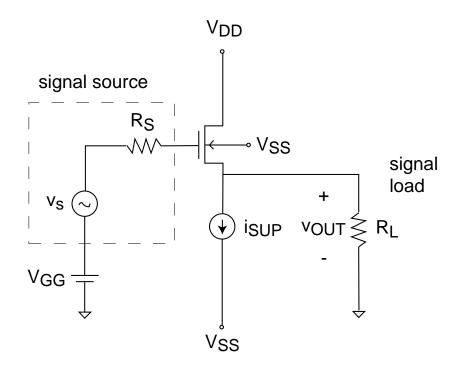
Notice:

$$R_{Tdb} = R_{out} / / R_L$$

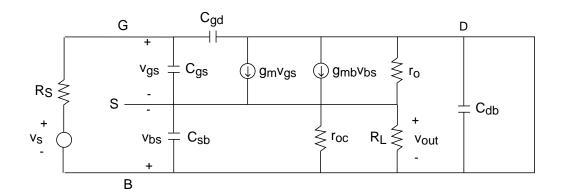
□ Bandwidth:

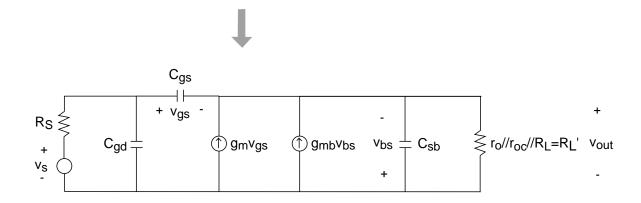
$$\omega_{H} \simeq \frac{1}{\tau_{gs} + \tau_{gd} + \tau_{db}} = \frac{1}{C_{gs} \frac{R_{S} + R'_{L}}{1 + g_{m}R'_{L}} + C_{gd}R_{S} + C_{db} \frac{R'_{L}}{1 + g_{m}R'_{L}}}$$

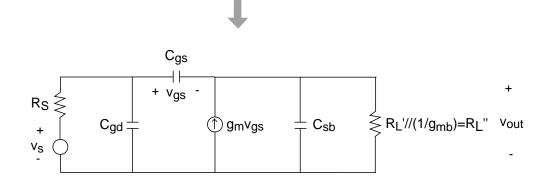
 \square If back is not connected to source:



Small-signal equivalent circuit:







$$A_{v,LF} = \frac{g_m R_L}{1 + g_m R_L}$$

 C_{sb} shows up at same location as C_{db} before, then bandwidth is:

$$\omega_H \simeq \frac{1}{C_{gs} \frac{R_S + R_L"}{1 + g_m R_L"} + C_{gd} R_S + C_{sb} \frac{R_L"}{1 + g_m R_L"}}$$

Simplify:

• CD amp is about driving low R_L from high $R_S \Rightarrow R_S \gg R_L$ ", and

$$\omega_H \simeq \frac{1}{R_S(\frac{C_{gs}}{1+g_m R_L"} + C_{gd}) + C_{sb} \frac{R_L"}{1+g_m R_L"}}$$

• CD stage operates as voltage buffer with $A_{v,LF} \simeq 1 \Rightarrow g_m R_L$ " $\gg 1$, and

$$\omega_H \simeq \frac{1}{C_{gd}R_S + \frac{C_{sb}}{q_m}}$$

Since C_{gd} and $1/g_m$ are small, if R_S is not too high, ω_H can be rather high (approach ω_T).

□ What happened to the Miller effect in CD amp?

$$\omega_H \simeq \frac{1}{R_S(\frac{C_{gs}}{1+g_m R_L"} + C_{gd}) + C_{sb} \frac{R_L"}{1+g_m R_L"}}$$

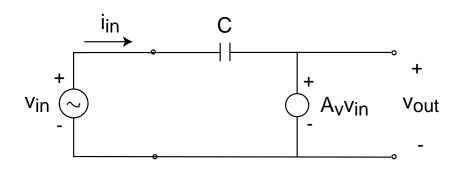
Miller analysis of C_{gs} :

$$C'_{gs} = C_{gs}(1 - A_v) = C_{gs}(1 - \frac{g_m R_L}{1 + q_m R_L}) = C_{gs} \frac{1}{1 + q_m R_L}$$

agrees with above result.

Note, since $A_v \to 1$, $C'_{gs} \to 0$.

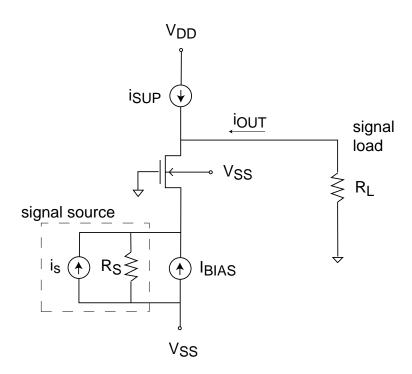
See in circuit:



$$C_M = C(1 - A_v)$$

if $A_v \simeq 1 \implies C_M \simeq 0$: bootstrapping

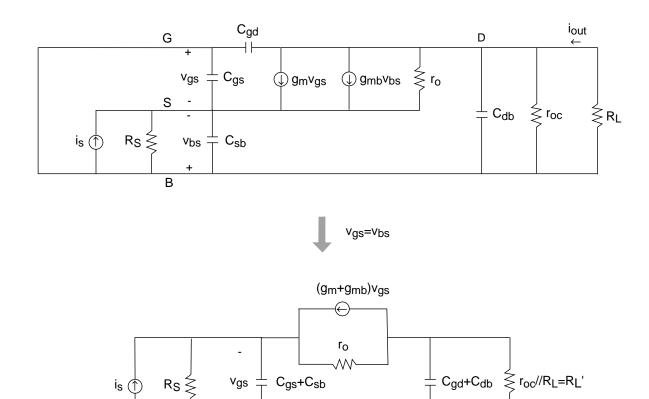
2. Frequency response of common-gate amplifier



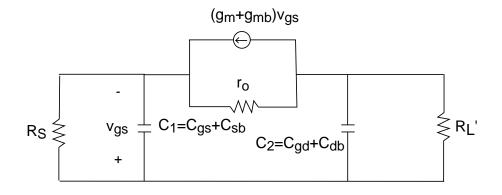
Features:

- current gain $\simeq 1$
- low input resistance
- high output resistance
- $\bullet \Rightarrow \text{good current buffer}$

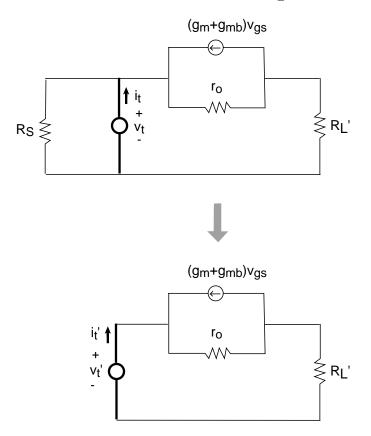
Small-signal equivalent circuit model:



 \square Frequency analysis: first, open i_s :



\square Time constant associated with C_1 :



Don't need to solve:

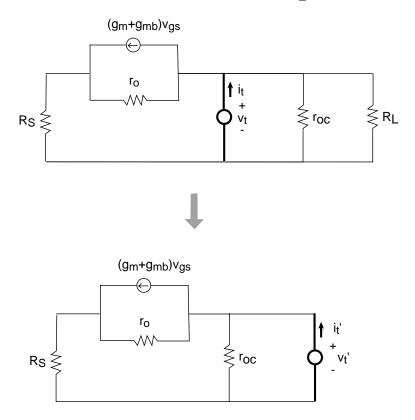
- test probe is in parallel with R_S ,
- test probe looks into input of amplifier \Rightarrow sees R_{in} !

$$R_{T1} = R_S / / R_{in}$$

And:

$$\tau_1 = (C_{qs} + C_{sb})(R_S//R_{in})$$

\square Time constant associated with C_2 :



Again, don't need to solve:

- test probe is in parallel with R_L ,
- test probe looks into output of amplifier \Rightarrow sees $R_{out}!$

$$R_{T2} = R_L / / R_{out}$$

And:

$$\tau_2 = (C_{qd} + C_{db})(R_L//R_{out})$$

□ Bandwidth:

$$\omega_H \simeq \frac{1}{(C_{gs} + C_{sb})(R_S//R_{in}) + (C_{gd} + C_{db})(R_L//R_{out})}$$

No capacitor in Miller position \rightarrow no Miller-like term.

Simplify:

• In a current amplifier, $R_S \gg R_{in}$:

$$R_{T1} = R_S//R_{in} \simeq R_{in} \simeq \frac{1}{g_m + g_{mb}} \simeq \frac{1}{g_m}$$

• At output:

$$R_{T2} = R_L//R_{out} = R_L//r_{oc}//\{r_o[1+R_S(g_m+g_{mb}+\frac{1}{r_o})]$$
 or

$$R_{T2} \simeq R_L//r_{oc}//[r_o(1+g_mR_S)] \simeq R_L$$

Then:

$$\omega_H \simeq \frac{1}{(C_{gs} + C_{sb})\frac{1}{q_m} + (C_{gd} + C_{db})R_L}$$

If R_L is not too high, bandwidth can be rather high (and approach ω_T).

Key conclusions

- Common-drain amplifier:
 - Voltage gain $\simeq 1$, Miller effect nearly completely eliminates impact of C_{gs} (bootstrapping)
 - if R_S is not too high, CD amp has high bandwidth
- Common-gate amplifier:
 - -no capacitor in Miller position \Rightarrow no Miller effect
 - if R_L is not too high, CG amp has high bandwidth
- R_S , R_L affect bandwidth of amplifier