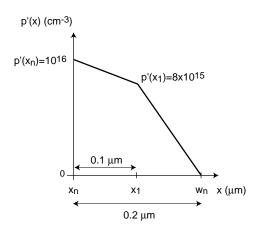

## Homework #5 - April 20, 2001

Due: April 27, 2001 at recitation (late homework will not be accepted)

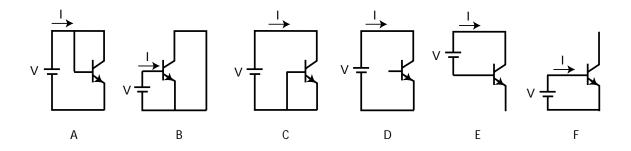
## Please write your recitation session time on your problem set solution.

1. [30 points] The equivalent circuit of a p<sup>+</sup>-n diode that you are trying to reverse engineer is measured at room temperature for two different bias points, one forward  $(I = 1 \ mA)$  and another one reverse  $(V = -10 \ V)$ . The results are sketched below:




Based on your understanding of the technology that has been used, you are pretty sure that you can assume that the diode is very abrupt (that is  $N_a \gg N_d$ ) and that all minority carrier behavior is dominated by the lowly-doped side. On the microscope, you measure the area of the diode and you find it to be  $10 \ \mu m^2$ .

- a) Estimate the doping level on the n side,  $N_d$ .
- **b)** Estimate the thickness of the n region,  $W_n$ .
- c) Verify whatever assumptions you needed to make.
- 2. [40 points] Consider an abrupt asymmetric p<sup>+</sup>-n junction diode with a junction area of  $25 \mu m^2$ . All the action in this device is dominated by the lowly-doped n-type region.


Due to processing reasons, the diffusion coefficient of holes across the quasi-neutral n-type region is not uniform. It suddenly changes half way down the n-QNR at location  $x_1$ . As a

result, at a current level of 10  $\mu A$ , the excess minority concentration in the quasi-neutral n-type region has a distribution as sketched below:



At this bias point:

- a) Estimate the hole diffusion coefficient in both portions of the quasi-neutral region.
- b) Estimate the total amount of excess minority carrier charge in the diode.
- c) Estimate the diffusion capacitance of the diode.
- d) Estimate the hole diffusion velocity at  $x_1^-$  and  $x_1^+$ .
- 3. [30 points] The figure below shows six possible ways of connecting an npn bipolar transistor that may yield a diode-like behavior. Using the ideal Non-Linear Hybrid- $\pi$  Model, calculate the I-V characteristics of the two-terminal device in each configuration. Express your result as a function of  $I_S$ ,  $\beta_F$ , and  $\beta_R$ .



Which of these configurations exhibit diode-like I-V characteristics?