Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.012 Microelectronic Devices and Circuits Spring 2007 Homework #5 Out: 04/04/2007 Due:04/13/2007

Problem 1

Below is a sketch not to scale of the minority carrier distribution across the quasi-neutral regions of a forward biased p-n diode. For this diode, $W_p - x_p = 4 \ \mu m$, $W_n - x_n = 3 \ \mu m$, $D_n = 25 \ cm^2/s$ and $D_p = 10 \ cm^2/s$. The area of the junction is $10 \ \mu m^2$.

- a) Calculate the hole current injected into the n-side of the diode.
- b) Calculate the electron current injected into the p-side of the diode.
- c) Calculate the diffusion capacitance associated with the carrier storage on the n-side of the diode
- d) Calculate the diffusion capacitance associated with the carrier storage on the p-side of the diode.
- e) How much should the voltage across the junction increase if we wish to double the total current through the diode?
- f) Compute the diffusion capacitance of the diode when we increase the voltage in the manner suggested in the previous question.
- g) What is the ratio of the doping levels across the junction: Na/Nd?
- h) In what direction should Na/Nd change if we wish to redesign the diode so as to get less diffusion capacitance at the same current level? (Assume that in redesigning the diode D_n , D_p , $W_n x_n$, and $W_p x_p$ do not change). Should Na/Nd increase or decrease? Explain.

Problem 2

Consider an abrupt asymmetric n^+p junction diode with a junction area of 100 μ m². All the action in this device is dominated by the lightly-doped p-type region.

Due to processing reasons, the diffusion coefficient of holes across the quasi neutral ptype region is not uniform and changes half way down the n-QNR at a location x_1 . As a result at a current level of 400 μ A, the excess minority carrier concentration in the quasi neutral p-type region has the distribution sketched below:

- a) Calculate the electron diffusion coefficient in both portions of the quasi neutral regions.
- b) Calculate the total amount of excess minority carrier charge in the diode.
- c) Calculate the diffusion capacitance of the diode.
- d) Calculate the electron diffusion velocity at x_1^- and at x_1^+ .

Problem 3

A pn junction diode can be used as a tunable capacitor. For a short-base diode with area $A = 20 \times 20 \ \mu m^2$, $Na = 10^{17} \ cm^{-3}$, $W_p = 1 \ \mu m$, $Nd = 10^{19} \ cm^{-3}$, $W_n = 0.25 \ \mu m$:

- a) Compute the depletion capacitance for a V_D of -2V and for a V_D of $\varphi_B/\,2.$
- b) Compute the diffusion capacitance and the total capacitance for a V_D of -2V and for a V_D of $\phi_B/2$.
- c) Compute the conductance for a V_D of -2V and for a V_D of $\phi_B/2$.

Problem 4

You are given a pn junction diode with the device data shown below.

 $\begin{array}{l} \text{Device Data:} \\ Na = 10^{16} \ \text{cm}^{-3} \\ Nd = 10^{15} \ \text{cm}^{-3} \\ \mu_n = 1400 \ \text{cm}^2/\text{Vs} \\ \mu_p = 500 \ \text{cm}^2/\text{Vs} \\ A = 50 \ \mu\text{m} \ \text{x} \ 50 \ \mu\text{m} \\ W_n = W_p = 2 \ \mu\text{m} \end{array}$

- a) What is the maximum applied voltage we can place across the diode and still satisfy the Low Level Injection constraint? We define this onset as when the minority carrier concentration equals 1 / 10 of the majority carrier concentration in thermal equilibrium.
- b) Calculate x_d at $V_D = 0.54$
- c) Calculate I₀
- d) Calculate the depletion capacitance (in pF) under the applied bias $V_D = 0.54$
- e) Calculate the diffusion capacitance (in pF) at $V_D = 0.54$
- f) Calculate g_d