Problem 1
An npn transistor with area $A_E = 2.5 \, \mu m \times 2.5 \, \mu m$ is biased in the forward active region, with the collector current $I_C = 50 \, \mu A$. The emitter, base and collector dimensions and doping are:

$N_{dE} = 10^{19} \, \text{cm}^{-3}$, $W_E = 0.3 \, \mu m$, $N_{aB} = 10^{17} \, \text{cm}^{-3}$, $W_B = 0.25 \, \mu m$, and $N_{dC} = 10^{16} \, \text{cm}^{-3}$, $W_C = 1.5 \, \mu m$.

A) Draw a picture of the minority carrier concentration in the emitter and base (identify the minority carrier concentration at the base and emitter edges).

From page 36 of Professor Sodini’s book:

$$\mu_{nB} = 775 \, \text{cm}^2 / \text{Vs} \quad \text{Thus} \quad D_{nB} = 20.03 \, \text{cm}^2 / \text{s}$$

$$\mu_{pE} = 75 \, \text{cm}^2 / \text{Vs} \quad D_{pE} = 1.939 \, \text{cm}^2 / \text{s}$$

$$\beta_F = \frac{N_{dE}D_{nB}W_E}{N_{aB}D_{pE}W_B} = 1240 \quad \text{And} \quad I_B = \frac{I_C}{\beta_F} = 40.323 \, nA$$

Also

$$I_B = qA_E \frac{D_{pE}}{W_E} \frac{n_i^2}{N_{dE}} e^{\frac{V_{as}/\gamma_h}{V_{th}}}$$

Therefore $V_{BE} = 0.7616V$

Thus

$p_{aE}(0^-) = 6.23 \cdot 10^{13} \, \text{cm}^{-3}$

$n_{pB}(0^-) = 6.23 \cdot 10^{15} \, \text{cm}^{-3}$

$p_{aE}(-W_E) = 10 \, \text{cm}^{-3}$

$n_{pB}(W_B) = 0 \, \text{cm}^{-3}$

B) Find the base-emitter bias V_{BE}.

$V_{BE} = 0.7616V$

C) Find the base current I_B.

$$I_B = \frac{I_C}{\beta_F} = 40.323 \, nA$$
D) For the npn BJT biased as above, given that $V_{An}=25\ V$, find the transconductance g_m, the input resistance r_π, and the output resistance r_0.

$$g_m = \frac{I_C}{V_{th}} = 1.93mS;\quad r_\pi = \frac{\beta_F}{g_m} = 641k\Omega;\quad r_0 = \frac{V_A}{I_C} = 500k\Omega$$

E) For the npn BJT biased as above, given that the emitter-base depletion region width is $x_{BE}=0.05\ \mu m$, what is the minority electron charge storage in the base $Q_{NB}(V_{BE})$ at this operating point?

$$|Q_{nb}| = qA\int_{\text{Base}} n(x)dx = \frac{1}{2} q \cdot A_{np} \cdot (W_B - x_{BE}) = 6.24 \cdot 10^{-16} C$$

F) What is C_π at this operating point?

$$C_\pi = A \frac{E_{Si}}{x_d} + g_m \frac{W_B^2}{2D_{nb}} = 12.9\ fF + 19.3\ fF = 32.2\ fF$$

Problem 2

In this problem we will consider an important development of the late 1980s, the SiGe alloy base BJT. This Hetero Bipolar Transistor (HBT) is usually fabricated as an npn BJT with a base made of SiGe to increase the intrinsic carrier concentration in the base and with Si collector and emitter. The emitter, base, and collector dimensions are:

- $N_{dE} = 5x10^{19}\ \text{cm}^{-3}$, $W_E = 0.25\ \mu m$, $N_{aB} = 10^{18}\ \text{cm}^{-3}$, $W_B = 0.25\ \mu m$, and $N_{dC} = 10^{17}\ \text{cm}^{-3}$, $W_C = 1.5\ \mu m$. Note that at room temperature the intrinsic carrier concentration of SiGe is $n_{iSiGe} = 5x10^{10}\ \text{cm}^{-3}$.

For this problem assume that the concentration of Ge is low thus the mobility, dielectric constant of the SiGe base film remain unchanged from that of Si.

A) Find α_F and the forward active current gain β_F for the npn SiGe HBT (SiGe Base Transistor) and npn BJT (Si Base) at room temperature.

$$\mu_{nb} = 325 cm^2/Vs\quad D_{nb} = 8.4 cm^2/s\quad D_{pE} = 1.29 cm^2/s$$

$$\mu_{pE} = 50 cm^2/Vs\quad \text{Thus}$$

$$\beta_{FSiGe} = \frac{N_{dE} D_{ab} n_{SiGe}^2 W_E}{N_{aB} D_{pE} n_{Si}^2 W_B} = 8125\quad \text{And}\quad \alpha_{FSiGe} = \frac{\beta_{FSiGe}}{1 + \beta_{FSiGe}} = 0.99988$$

$$\beta_{FSi} = \frac{N_{dE} D_{ab} W_E}{N_{aB} D_{pE} W_B} = 325\quad \text{And}\quad \alpha_{FSi} = \frac{\beta_{FSi}}{1 + \beta_{FSi}} = 0.9969$$
B) What is the ratio between forward active current gains for the npn SiGe HBT and the corresponding npn BJT?

\[
\frac{\beta_{FSiGe}}{\beta_{FSi}} = \frac{n_{SiGe}^2}{n_{Si}^2} = 25
\]

C) Determine the base doping of the npn BJT that will yield the same value of β_F as in the npn SiGe HBT. (Note that the mobility depend on the doping, thus changing the doping would change the mobility. You should converge to the solution through few iterations)

For $N_{aB} = 9.2 \cdot 10^{16} \text{ cm}^{-3}$ the mobility is $\mu_{nB} = 750 \text{ cm}^2 / \text{Vs}$

\[
\beta_{FSi} = \beta_{FSiGe} = \frac{N_{aE} D_{aB} W_E}{N_{aB} D_{pt} W_B} = 8150
\]
Problem 3

A p⁺np bipolar transistor has the geometry and doping profile described below. For all the following questions the BJT is operating in a common-emitter mode in the forward active region.

BJT Data:

\[D_{pB} = 5 \text{ cm}^2/\text{s}; \ D_{nE} = 10 \text{ cm}^2/\text{s}; \ W_E = 500 \text{ nm}; \ A = 25 \mu\text{m}^2; \ N_{aE} = 10^{19} \text{ cm}^{-3}; \ N_{db} = 10^{17} \text{cm}^{-3}; \ N_{aC} = 10^{16} \text{cm}^{-3}. \]

A) We want the current gain \(\beta_F \) to be 100, what should be the value for the base thickness \(W_B \)? Neglect depletion region widths.

\[
\beta_F = \frac{N_{aE} D_{pb} W_E}{N_{db} D_{nE} W_B} \quad \text{Therefore} \quad W_B = \frac{N_{aE} D_{pb} W_E}{N_{db} D_{nE} \beta_F} = 250 \text{nm}
\]

B) What is the saturation current \(I_S \) for the emitter-base p-n diode?

\[
I_E = q A_E \frac{D_{pb}}{W_B} n_i^2 e^{\frac{V_{EB}}{V_{th}}} = I_s e^{\frac{V_{EB}}{V_{th}}} \quad \text{Therefore} \quad I_s = q A_E \frac{D_{pb}}{W_B} n_i^2 e^{\frac{V_{EB}}{V_{th}}} = 8 \cdot 10^{-18} \text{A}
\]

C) What should be the EB voltage to obtain a collector current of \(I_C = 100 \mu\text{A} \)?

\[
I_C = I_s e^{\frac{V_{EB}}{V_{th}}} \quad \text{Therefore} \quad V_{EB} = V_{th} \cdot \ln\left(\frac{I_C}{I_s}\right) = -0.78V
\]

D) What is the transconductance at \(I_C = 100 \mu\text{A} \)?

\[
g_m = \frac{I_C}{V_{th}} = 3.87mS
\]

E) What is the capacitance \(C_\pi \) at \(I_C = 100 \mu\text{A} \)?

\[
C_\pi = \sqrt{2} C_{j0} A_E + g_m \frac{W_B^2}{2 D_{pB}} = 32.7 \text{fF} + 242 \text{fF} = 275 \text{fF}
\]

\[C_{j0} = 92.5n\text{F/ cm}^2 \]

F) What is the input resistance at \(I_C = 100 \mu\text{A} \)?

\[
R_{in} = R_E = \frac{\beta_F}{g_m} = 25.8k\Omega
\]

G) What is the output resistance at \(I_C = 100 \mu\text{A} \) given an Early Voltage \(V_A = 30V \)?
\[Ro = \frac{V_A}{I_c} = \frac{30V}{100\mu A} = 300k\Omega \]

H) In forward active regime find the frequency limit set by the base diffusion transit time?

The BJT needs to be in the forward active region.

\[V_{BE} < 0 \text{ and } V_{BC} > 0 \]

\[f_T = \frac{1}{\tau_f} = \frac{1}{W_B^2} = 16\text{GHz} \]

Problem 4

The figure below shows six possible ways of connecting an npn bipolar transistor that may yield a diode-like behavior. Using the Ideal Non-Linear Hybrid-π Model, write the I-V characteristics of the two-terminal device in each configuration. Express your results as a function of \(I_S \), \(\beta_F \), and \(\beta_R \).

Configuration A

\[V_{BE} = V \text{ and } V_{BC} = 0 \]

\[I = \frac{I_S}{\beta} \left(e^{\frac{V_{BE}}{V_{th}}} - 1 \right) + I_S \left(e^{\frac{V_{BE}}{V_{th}}} - 1 \right) \]

Therefore \[I = I_S \frac{1 + \beta_F}{\beta_F} \left(e^{\frac{V}{V_{th}}} - 1 \right) \]

For \(\beta_F >> 1 \) \[I \approx I_S \left(e^{\frac{V}{V_{th}}} - 1 \right) \]

Configuration B

\[V_{BE} = V \text{ and } V_{BC} = V \text{ (because there is a short circuit between E and C)} \]

...
\[I = \frac{I_s}{\beta_F} \left(e^{\frac{V_{ae}}{V_{th}}} - 1 \right) + \frac{I_s}{\beta_R} \left(e^{\frac{V_{ae}}{V_{th}}} - 1 \right) \] Therefore \[I = \frac{I_s}{\beta_F} \left(e^{\frac{V_{ae}}{V_{th}}} - 1 \right) + \frac{I_s}{\beta_R} \left(e^{\frac{V_{ae}}{V_{th}}} - 1 \right) \]

For \(\beta_F >> \beta_R \)

\[I \approx \frac{I_s}{\beta_R} \left(e^{\frac{V_{ae}}{V_{th}}} - 1 \right) \]

Configuration C

\(V_{BE} = 0 \) and \(V_{BC} = -V \)

\[I = -\frac{I_s}{\beta_R} \left(e^{-\frac{V}{V_{th}}} - 1 \right) + I_s \left(1 - e^{-\frac{V}{V_{th}}} \right) \] Therefore \[I = -\frac{I_s \beta_R + 1}{\beta_R} \left(e^{-\frac{V}{V_{th}}} - 1 \right) \]

Configuration D

\(V = V_{BC} - V_{BC} \)

\[\frac{I_s}{\beta_R} \left(e^{\frac{V_{ae}}{V_{th}}} - 1 \right) + \frac{I_s}{\beta_F} \left(e^{\frac{V_{ae}}{V_{th}}} - 1 \right) \] Therefore \[\frac{I_s}{\beta_R} \left(e^{\frac{V_{ae}-V}{V_{th}}} - 1 \right) + \frac{I_s}{\beta_F} \left(e^{\frac{V_{ae}}{V_{th}}} - 1 \right) \]

Therefore \[e^{\frac{V_{ae}}{V_{th}}} = \frac{1 - 1}{\beta_R} \frac{e^{-\frac{V}{V_{th}}} - 1}{\beta_R - 1} \] Therefore \[I = \left(\frac{1}{\beta_R} - \frac{1}{\beta_F} \right) \left(e^{-\frac{V}{V_{th}}} + 1 \right) - \frac{1}{\beta_F} \]

Configuration E

\(V = -V_{BC} \) and \(V_{BE} = \phi_{BE} \)

No net current flow through the base/emitter junction since the emitter is open. The BJT is working as a diode.

\[I = \frac{I_s}{\beta_R} \left(e^{-\frac{V}{V_{th}}} - 1 \right) \]
Configuration E

$V = V_{BE}$ and $V_{BC} = \phi_{BC}$

No net current flow through the base/collector junction since the emitter is open. The BJT is working as a diode.

$$I = \frac{I_S}{\beta_F} \left(e^{V_{th}/V_{fb}} - 1 \right)$$